| Simpésio Brasileiro de Computacdo e Misica 161

The SmQKe music representation, description language, and interchange format

Stephen Travis Pope
The Nomad Group, Computer Music Journal, CCRMA
P. Q. Box 60632, Palo Alto, California 94306 USA
Electronic Mail: stp@CCRMA Stanford.edu

ABSTRACT

.o Smallmusic Object Kernel (SmOKe) is an object-oriented representation, description language and interchange format for
isical parameters, events, and structures. The author believes this representation, and its proposed linear ASCII description,
he well-suited as a basis for: (1) concrete description interfaces in other languages, (2) specially-designed binary storage and
ferchange formats, and (3) use within and between interactive multimedia, hypermedia applications in several application do-
1s.

textual versions of SmOKe share the terseness of note-list-oriented music input languages, the flexibility and extensibility
Fereal’” music programming languages, and the non-sequential description and annotation features of hypermedia description
rmats. This description presents the requirements and motivations for the design of the representation language, defines its
« concepts and constructs, and presents examples of the music magnitudes and event structures. The intended audience for
discussion is programmers and musicians working with digital-technology-based multimedia tools who are interested in
design issues related to music representations, and are familiar with the basic concepts of software engineering. Two other
gments ([Smallmusic 1992] and [Pope 1992]), describe the SmOKe language, and the MODE environment within which it
een implemented, in more detail.

L INTRODUCTION

The desire has been voiced (ANSI 1992; Dannenberg et al. 1989; MusRep 1987; MusRep 1990; Smallmusic 1992), for an ex-
sive, flexible, abstract, and portable structured music description and composition language. The goal is to develop a kernel
cription that can be used for structured composition, real-time performance, processing of performance data, and analysis.
hould support the text input or programmatic generation and manipulation of complex musical surfaces and structures, and
ir capture and performance in real time via diverse media. The required language have a simple, consistent syntax that pro-
es for readable complex nested expressions with a minimum number of different constructs. The test of the language and its
erlying representation will be the facility with which applications can be ported to it. '

allmusic Object Kernel consists of primitives for describing the basic scalar magnitudes of musical objects, abstractions for
sical events and event lists, and standard messages for building event list hierarchies and networks. Structures in the under-
g music representation can be described in a text-based linear format, and in terms of the of in-memory data structures that
zht be used to hold them. It is intended that independent parties be able to implement compatible abstract data structures,
crete interchange formats, and description languages based on the formal definition of SmOKe (Smallmusic 1992).

¢ naming conventions and the code description examples use the Smalltalk-80 programming language (Goldberg and Robson
9), but the representation should be easily manipulable in any object-oriented programming language. For readers unfamil-
ith Smalltalk-80, another document (available via InterNet ftp from the file named “reading.smalltalk.t” in the directory
onymous@ccrma-ftp.Stanford.edu:/pub/st80™), introduces the language’s concepts and syntax to facilitate the reading of the
6 examples in the text. In this document, SmOKe examples are written between square brackets in sans-serif italic typeface.
2: REQUIREMENTS AND MOTIVATIONS
veral of the groups that have worked on developing music representations have started by drawing up lists of requirements
such a design, and separating out which items are truly determined by the underlying representation, and which are interface
application issues. The Smallmusic group developed the following list, using the results of several previous attempts (see
ons above) as input. SmOKe shall provide or support:

« abstract models of the basic musical quantities (scalar magnitudes such as pitch, loudness or duration);

sound functions, granular description, or other (non-note-oriented) description abstractions;

flexible grain-size of “events” in terms of “notes,” “grains,” “clements,” or “textures”;

~* description/manipulation levels including event, control, and sampled function;

» hierarchical event-tree (nested lists) for “parts,” “tracks,” or other parallel or sequential structures;

separation of “data” from “interpretation” (what vs. how in terms of having interpretation objects such as the instru-

162 XIV Congresso da Sociedade Brasileira de Computacso | Simpésio Brasileiro de Computagio e Misica 163

ment/note, voice/event, or performer/part abstractions);

« abstractions for the description of “middle-level” musical structures (e.g., chords, clusters, or trills);

o annotation of events supporting the creation of heterarchies (lattices) and hypermedia networks;

» anmotation including common-practise notation possible (application issue);

» description of sampled sound synthesis and processing models such as sound file mixing or DSP;

» possibility of building convertors for many common formats, such as MIDI data, Adagio, note lists, HyTime, DSp Forma) ‘ ‘ . . ' .
code, instrument definitions, mixing scripts; and K SCOTE consists of one or more parallel or sequential event lists whose events may have interesting properties and links,

o possibility of parsing live performance into some rendition in the representation, and of interpreting it (in some ref s, Cvents, and event lists are described using class messages that create instances, or using immediate objects and the
tion) in real-time (application issue related to simplicity, terseness, etc.). .. fix operators. These can be named, used in one or more event lists, and their properties can change over time. There

. . defined “fevel” or “grain-size” of events; they can be used at the level of notes or envelope components. patters,

The same applies to event lists, which can be used in parallel or sequentiaily to manipulate the sub-sounds of a com-
The SmOKe representation can be summarized as follows. Music (i.e., a musical surface or structure), can be represented a n or as “motives,” “tracks,” or “parts.” Viewed as a document, a score consists of declarations of, or messages to,
series of “events” (which generally last from tens of msec to tens of sec). Events are simply property lists or dictionaries;: th ént ists and other SmOKe structures. It can resemble a note list file or a DSP program. It is structured as executable
can have named properties whose values are arbitrary. These properties may be music-specific objects (such as pitches or spag g0 expressions, and can define one or more “root-level” event lists. There is no “section” or “wait” primitive; sections
positions), and models of many common musical magnitudes are provided. Events are grouped into event lists as records ¢ posed t0 be sequential must be included in some higher-level event list to declare that sequence. A typical score will
sisting of relative start times and events. Event lists are events themselves and can therefore be nested into trees (i.e., an eve; 4 name a top-level event list, and then add sections and parts to it in different segments of the document.
list can have another event list as one of its events, etc.); they can also map their properties onto their component events, T] 5: SmOKe MUSIC MAGNITUDES
means that an event can be “shared” by being in more than one event list at different relative start times and with different pro . I , X T i = . ,
erties mapped onto it. Events and event lists are “performed” by the action of a scheduler passing them to an interpretation o descnpnve m{)dc}s for the basic mus1c-spe'C1f1c ma'gnm}de types such as pitch, lopdness or duration are the foundation
ject or voice, Voice objects and applications determine the interpretation of events® properties, and may use “standard” prope o, These are similar to Smalltalk-80 magnitude objects in that they represent partially- or fully-ordered scalar or vector
names such as pitch, loudness, voice, duration, or position. Voices map event properties onto parameters of I/O devices; th with (e.g:) numerical or symbolic valges. §Sme c?f t,l}elr beha_vt?r dep’(j,nds on what th&?y sm‘.ld for, and some Of, i on
can be a rich hierarchy of them. A scheduler expands and/or maps event lists and sends their events to their voices. Stored da 'ro stored. These two aspects are the objects’ “species” and their “class.” The pitch-species objects 440.0 Hz and "ci3',
functions can be defined and manipulated as breakpoint or summation parameters, “raw” data elements, or functions of le, share some behavior, and can be mixed in arithmetic with (ideally) no loss of “precision. The expression (261.26

above. Sampled sounds are also describable, by means of synthesis “patches,” or signal processing scripts involving a vocab I key number 8) should be handled differently than (1/4 beat + 80 msec). The class of a music magnitude depends on
lary of sound manipulation messages. : i of their values (e.g., floating-point numbers or strings), while their species denote what they represent. Only the spe-

ible to the user.
gnitudes can be described using prefix class names or post-fix type operators, e.g., [Pitch value: 440.0] or [440.0
3" pitch), [Amplitude value: 0.7071] or [-3 dB]. The representation and interchange formats should support all man-
ird mixed-mode music magnitude expressions (e.g., [('c4’ pitch) + (78 cents) + (12 Hz)]), with “reasonable” assump-
1e semantics of the operation (coerce to Hz or cents?). Applications for this representation should support interactive
£ music magnitude objects that support the manipulation of the basic hierarchy described below, as well as its exten-
ght-weight” programming.
on the next page shows the class hierarchy of the model classes—those used for the species (i.e., representation)—
 side, and the partial hierarchy of the concrete (implementation) classes on the right. The class inheritance hierarchy
by the order and indentation of the list. The lines indicate the species relationships of several of the common music
. The examples below demonstrate the verbose (class message) and terse (value + post-operator) forms of music
description, Note that comments are delineated by double quotes (or curly braces) in SmOKe.

51ance (strings are written between single-quotes in SmOKe [and Smalltalk]). All central classes are assumed to sup-
istency through naming” whereby any object that is explicitly named gets stored in a global dictionary under that name
pnciﬂy released. What the exact (temporal) scope of the persistency is, is not defined here. The (lexical) extent is as-
e as smOKe “document” or “module.”

b=t

4: THE SmOKe LANGUAGE
41L0 Description
The SmOKe music representation can be linearized easily in the form of immediate object descriptions and message expx{
sions. These descriptions can be thought of as being declarative (in the sense of static data definitions), or procedural (in
sense of messages sent to class “factory” objects). A text file can be freely edited as a data structure, but one can compile it w
the Smalltalk-80 compiler to “instantiate” the objects (rather than needing a special formatted reading function). The pos
expression format taken from Smalltalk-80 (receiverObject keyword: optionalArgument) is easily parseable in C++,.Li
Forth, and other languages.
4 ir
The basic representation itself is language-independent, but assumes that the following immediate types are representable
ASCII/ISO character strings in the host language:

« arbitrary precision integers (at least very large), : nitude Example
« integer fractions (i.e., stored as numerator/denominator, rather than the resulting whole or real number), tion value: 1/16) asMS “Same as [1/16 beat]; answers 62.”
» 32- (and 64-bit) (7-, 12-place precision) floating-point numbers, h.value: 36) asHertz “Same as [36 pitch]; answers 261.623.7
° arbitrary-length ASCII/ISO strings, ude value: ‘ff’) asMidi “Or [#ff ampl]}; answers 106.”
« unique symbols (i.c., strings managed with a hash table), ' pitch), (‘pp’ dynamic) “Terse examples; value + post-op.”
« 2. and 3-dimensional points (or n-dimensional complex numbers) (axial or polar representation), and Hz), (1/4 beat), (-38 dB), (56 velocity), (2381 msec), (00 position)
« functions of one or more variables described as breakpoints for linear, exponential or spline interpolation, Fourier 6: SmOKe EVENT OBIECTS
sums, series, sample spaces, and probability distributions. view of events is as Lisp-esque property lists, dictionaries of property names and values, the relevance and inter-

The support of block context objects (in Smalltalk), or closures (in LISP), is defined as being optional, though it is consi fw}fllom is leftup to oLl.mers (voices and applications). Events need not be thought of as mapping one-to-one to ‘nolgs,”
important for complex scores, which will often need to be stored with interesting behavioral information. (It is beyond the S0 should be able o faithfully represent note-level objects. There may be one-to-many or many-o-one relationships
of the present design to propose a metalanguage for the interchange of algorithms.) Dictionaries or property association h‘ts and “notes.” Events may have arbitrary properties, some of whom will be common to most musical note-level
must also either be available in the host language or be implemented in a support library (as must unique symbols and e\ has duration, pitch or loudness), while others may be used more rarely or only for non-musical events.

associations in some cases [e.g., std. C]). ertics can be accessed as keyed dictionary items (i.e., events can be treated as record data structures), or as direct
. events can be thought of as purely programmatic). One can set an event to be “blue” (for example), by saying
#color put: #blue "dictionary-style accessing’] or more simply [anEvent color: #blue "behavioral access-
Y #string means unique symbol whose name is string). Events can be linked together by having properties that are
W other events or event lists, (as in [anEvent #soundsLike: otherEvent]), enabling the creation of annotated hy-

4,3 Naming and Persisten

The names of abstract classes are known and are treated as special globals. The names of abstract classes are used wh :
possible, and instances of concrete subclasses are returned, as in [Pitch value: '¢3'] or {3’ pitch] both returning a Sy

| Simpdsio Brasileiro de Computacio e Miisica 165

164 XIV Congresso da Sociedade Brasileira de Computacio

creation messages such as [dur: durationValue pitch: pitchValue amp: amplVaule]. The second example is the terse
£ event list declaration using the behavior of (duration => event) associations such that [(aMagnitude) => (anlmme-
'ictioﬂ“"y)] returns the association [(duration with value aMagnitude) => (Event with given property dictionary)). One
dicﬁonary-style shorthand with event associations to create event lists, as in the very terse way of creating an anony-
on_persishent) list with two events in the second example. The third example shows the first few notes from the c-minor
om The Well-Tempered Clavichord in which the first note begins after a rest (that could also be represented explicitly
entwith a duration and no other properties). Note that there is one extra level of parentheses for readability.
. Fxamples .
1ists the verbose way”
gentList newNamed: #testl) add: (0 => (Event dur: 1/4 pitch: ‘e3’ ampl: ‘mf’);
add: (1 => ((Event new) dur: 6.0 ampl: 0.3772 sound: #s73bw))]
“Lists——concatenation of events or (dur => event) associations.”
40 Hz, (1/1 beat), 44.7 dB), (1 => ((1.396 sec, 0.714 ampl) sound: #s73bw; phoneme: #xu))]
or fugue theme.”
art time duration pitch voice”
{0.5 beat => ((1/4 beat), (’c3’ pitch), (voice: “harpsichord-))),
((1/4 beat), (’b2° pitch)}), ({1/2 beat), (’c3’ pitch)),
{(1/2 beat), (’g2’ pitch)), ({(1/2 beat), (‘a—-flat2’ pitch)))

8: EVENT GENERATORS AND MODIFIERS
theneratar and EventModifier packages provide for music description and performance using generic or composition-
middle-level objects. Event generators are used to represent the common structures of the musical vocabulary such as
ostinati, or compositional algorithms. Each event generator subclass knows how it is described—e.g., a chord with a
inversion, or an ostinato with an event list and repeat rate—and can perform itself once or repeatedly, acting like a
. a control structure, or a process, as appropriate. EventModifier objects hold onto a function and a property name; they
old to apply their functions to any property of an event list lazily or eagerly. Event generators and modifiers are de-
elsewhere.

permedia networks of events. Event properties can also be active blocks or procedures (in cases where the system suppg,
pilation at run-time as in Smalltalk-80 or Lisp), blurring the differentiation between events and “active agents.” g
created either by messages sent to the class Event (which may be a macro or binding to another class), or more terse}

W

by the concatenation of music magnitudes using the message “,” (comma for concatenation), as shown in the examp]
Applications should enable users to interactively edit the property lists of objects, and to browse event networks vig the
or their links using flexible link description and filtering editors. Standard properties such as pitch, duration, positioy
tude, and voice are manipulated according to “standard” semantics by many applications.

i NumericalMagnitude—numerical value
Chroma—pitch or color Inerveliagnitude
MIDIPitch—e.g., 73 pitch
MID1{Valocity—e.g., 54 velocity (or ampl)
atioMagnitude ('relative’)—relative to another magnitude
RatioDuration—1/4 beat
RatioLoudness—0.7071
DBLoudness—-12 d8
RatioPitch—11/9 of: aPitch
NominalMagnitude—name and table
SymbolicLoudness—'mp* ampt (or loudness)
SymbolicPitch—'c#3’ pitch
ConditionalDuratio bination of other durati
BlockDuration—{ x | x > 42] :
BooleanDuration—{ x | {durt: x) and: {dur2: x}}

OrdinalMagnitude (table'}—order-only

PFisld (‘name’ ‘fleld’}—arbitrary field
HertzPitch—261.623 Hz
MSecondDuration—1215 msec
SecondDuration—1.25 sec

ModeMember—maoda or cyclical pitch class
Pitch—scalar pitch
Chronos—abstract ime model
Duration—duration model
Meter—beat or metronome

Ergon—abstract loudness/amplitude mode
Amplitude—dynamic

Positus—abstract position/space
Directionality—direction and radiation pattern

)

Positior—1- or more-d location

Spatialization—environment
Figure 1: SmOKe Music Magnitude Model Abstractions and Implementation Classes
Event Examples

“Event creation examples—-the verbose way (class messages).”
[event := (Event newNamed: #flash) color: ¥white; place: #there]
[(Event duration: (Duration value: 1/2) pitch: (Pitch value: #c2)
loudness: (Loudness value: #mf)) playOn: aVoice]
“Create three events with mixed properties—-the terse way”
[(440 Hz), (1/4 beat), (-12 dB), Voice default] “abstract props.” ;
[38 key, 280 ticks, 56 vel, (#voice -> 4)] “MIDI-style props.”.
[(#c4 piteh, 0.21 sec, 0.37 ampl, (Voice named: #oboe)] “note-list style”
“Create a named link between two events.”
[eventl isLouderThan: event2]

9; FUNCTIONS, PROBABILITY DISTRIBUTIONS AND SOUNDS

also defines functions of one or more variables, several types of discrete or continuous probability distributions, and
 and sampled sounds. The description of these facilities is, however, outside the scope of this paper, and the reader is
(Smallmusic 1992).

‘ 10: YOICES AND STRUCTURE ACCESSORS

rotmance” of events takes place via Voice objects. Event properties are assumed to be independent of the parameters
thesis instrument or algorithm. A voice object is a “property-to-parameter mapper” that knows about one or more
input formats for SmOKe data (e.g., MIDI, note list files, or DSP commands). A StructureAccessor is an object that
anslator or profocol convertor. An example might be an accessor that responds to the typical messages of a tree node
ber of a hierarchy (e.g., What's your name? Do you have any children/sub-nodes? Who are they? Add this child to the-
t knows how to apply that language to navigate through a hierarchical event list (by querying the event list’s hierar-
Ke supports the description of voices and structure accessors in scores so that performance information or alternative
can be embedded. The goal is to be able to annotate a score with possibly complex real-time control objects that ma-
structure or interpretation. Voices and event interpretation are described in (Pope 1992).

, 12: SmOKe SCORE EXAMPLE

scores, sections with declarations of variables, naming of event lists, event definition, functions and event modifiers,
tion, can be freely mixed. Note that one tries to avoid actually typing SmOKe at all anyway, leaving that to interactive
editors, algorithmic generation or manipulation programs, or read/write interfaces to other media, such as MIDI. The
low shows the components of a SmOKe score for a composition with several sections declared in different styles.
Name declarations are placed between vertical bars.

L EVENT LISTS
Events are grouped into collections—event lists—where a list is composed of associations between start times (dura
ing at the start time of the event list) and events or sub-lists (nested to any depth). Schematically, this looks like: (E
(durl => eventl), (dur2 => even2), ...) where (x => y) means association with key x and value y. Event lists can
their own properties, and can map these onto their events eagerly (at definition time) or lazily (at “performance”
have all the property and link behavior, and special behaviors for mapping with voices and event modifiers. Event
named, and when they are, they become persistent (until explicitly erased within a document or session).

The messages [anEventList add: anAssociation) and [anEventList add: anEventOrEventList at: aDuratiori;
the corresponding event removal messages, can be used for manipulating event lists in the static representation or
tions. If the key of the argument to the add: message is a number (rather than a duration), it is assumed to be the
duration in seconds or milliseconds, as “appropriate.” Event lists also respond to Smalltalk-80 collection-style contrc
messages such as [anEventList collect: aSelectionBlock] or [anEventList select: aSelectionBlock], though th
the representation of contexts/closures. The behaviors for applying functions (see below) to the components of evel
look applicative (e.g., [anEventList apply: aFunction to: aPropertyNamel), or one can use event modifier objec
a stateful representation of the mapping. Applications will use event list hierarchies for browsing and annotation as
score following and performance control. The use of standard link types for such applications as version control (Wil
types as #usedToBe or #viaScript]1b5i4), is defined by applications and voices.

A named event list is created (and stored) in the first example below, and two event associations are added to it, 0“@
0 (seconds by default), and the second at 1 sec. Note that the two events can have different types of properties, and

ons of variable names and top-level event list.”

€ sectionl section2 | “name declarations--optional but advised.”
i= EventList newNamed: #piece.

~-verbose, add events using add:at: message.”

nl := EventList newNamed: #sectionl.

nl add: (...first event (may have many properties)...) at: O.

Ql add: (...second event...) at: 0. “starts with a chord.”
“...section 1 events, in parallel or sequentially...”

166 XIV Congresso da Sociedade Brasileira de Computacio

add event assoc. using ‘.’ concatenation operator.”

)y => (...eventl...)), ((1/4 beat) => {event2)},

“gection 2-—terse,

section2 := ((0 beat
v, . .section 2 events...”,

((2109/4 beats) => (event3308)) .

“Event list composition (may be placed anywhexre)”
piece add: sectionl; add: section2. “add the sections in sequence.”
piece add: (Event duration: (4/1 beat)) . “add one measure of rest after section 3,
wAdd a section from data arrays.”
piece add: (EventListwithProperties: # (duration: loudness: pitch:)
values: {(Array with:# (250 270 230 120 260 260 ...)} “duration”
values: {(Array with:# (‘mp’) “loudness”
values: {(Array with:# (‘e3’ 'd" ‘e’ gloe.. D) “pitch”
“add an event with the given samples (you want low-level? we got low-levelt)”
plece add: (Event rate: 44100 channels: 1 samples: $(0 121 184 327 441 ...)).
wpeclare global (named) event modifiers, functions, etec.” :
{Rubato newNamed: #tempo) function: (...tempo spline function...} property: #startTy
piece tempo: (Rubato named: #tempo) .
“Optionally declare voices, accessors, other modifiexs, etc.”

13: CONCLUSIONS
The Smallmusic Object Kernel (SmOKe)isa representation, description language and interchange format for musical
eases the creation of concrete description interfaces, the definition of storage and interchange formats, and is suitabl
multimedia, bypermedia applications. The SmOKE description format has several versions, ranging from very readab|
terse, and covering a wide range of signal, event, and structure types from sampled sounds to compositional algorithmg
can be viewed as a procedural ora declarative description; it has been designed and implemented using an object-orien
odology and is being tested in several applications. More explicit documents describing SmOKe, and the Smalltalk-g

mentation of the system in the MODE system, aré freely available via Internet file transfer.

SmOKe, and the MODE of which it is a part, is the work of many people. Craig Latta and Daniel Oppenheim came y
names Smallmusic and SmOKe. These two, and Guy Garnett and Jeff Gomsi, were part of the team that discussed

of SmOKe, and commented on its design documents (Smallmusic 1992).

ANSI 1992 Journal of Technical Development, ANSI Working Group X3V1.8MSD-7 (now ISOIEC DIS ld

R. B. Dannenberg, L. Dyer, G. E. Garnett, S. T. Pope, and C. Roads, “Position Papers for a Panel onMu
Representation,” Proc. of the ICMC, San Francisco: ICMA, 1989. ~

A. Goldberg and D. Robson, Smalltalk-80: The Language, (revised and updated from 1983 edition). Menl
Addison-Wesley, 1989.

MusRep 1986, R. Dannenberg, J. Maloney, etal.,
USENET

MusRep 1990, G. Diener, L. Dyer, G. E. Garnett, D. Oppenheim, 5. T. Pope et al,,
representation at CCRMA”, Fall, 1990.

Newcomb, N. A. Kipp, and V. T. Newcomb. “The HyTime Hypermedia/ Time-based Document 5t
Language,” Communications of the ACM, vol. 34, no. 11, pp. 67-83

S.T. Pope, “Interim DynaPiano: An Integrated Computer Tool and Instrument for Co
Journal 16:3. Fall, 1992.

Smallmusic 1991. G. E. Garnett, J. Gomsi, C. Latta, D. Oppenheim, S.T.Popeetal., Smallmusic disctt

notes, Credo 1-6 documents (from which this document was derived), and MODE User Primitive sp!

available from Smallmusic@XCF.Berkeley.edu as email or via anonymous InterNet ftp from the setvel

ftp.Stanford.edu in the directory pub/st80 (see the README file there).

Network electronic discussion on music represent

“Notes of meeting

mposers," Con

Analise

Musical, Educacao

