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Classe Instrumento F. bisicas
Diapaséo 1,2
Flauta 1,2,3,4
1 Guitarra 1,2,3
Marimba 1,2,3,5
Violino 1,2,3,4
Contrabaixo 1,2,3,6
Trompete 1,2,3
2 Trompa Francesa 1,2
Trombone 1,2
Clarinete 1,2,3
3 Sax Tenor 1,2
Sax Alto 1,2

Tabela 1: Ilustra um exemplo de classificagdo de
instrumentos musicais e as respectivas fung¢Ses
basicas K-L.

Como podemos observar, a tabela 1, apresen-
ta os instrumentos divididos em classes, as funcOes
bésicas utilizadas por cada instrumento. Um exem-
plo da eficiéncia da técnica é observado quando da
sintese do clarinete figura 1: uma representagdo ra-
zoével utilizando Fourier exigiria em torno de 19 fun-
¢Bes basicas [MOO T7], enquanto que por Karhunen-
Loéve, seriam necessirias apenas 3, como visto na
tabela 1.

Este método de representagdo de sinais pode ser
utilizado com sucesso em outras aplicagdes onde as
informagdes componentes dos sinais variam rapida-
mente. Tal é o caso de tons ndo harmonicos.
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Abstract

This paper intreduces a non-standard sound synthesis method that the i
) t authors,
t‘ermxpolog‘y drawy from the literatare on chaos theory, call synthesis by functi::;};
iterations. It'|<%escnbes the general formalism and the application of a difference equation
modgl ~ the “sin mz:p". .Sounds generated with this method can show dynamical properties
ranging from very acu_ve" behavior (spectrally rich transient phenomena, turbulence and
noise) to relatively "inactive" behavior (smooth, if not almost ﬂz;t curves), d
unpredictable transitions in between. >

Motivations

In computer music research, sound synthesis is a maj i i
1 C ) jor topic. In short, one can easily r i
distinct approaches to the design and impl i is 1 we refor to themn
plementation of sound synth N

as the "standard” and the "non-standard” approach. Fyfhesis methods here, we refer to them
Most rt_esearch work is usually unqertakcn in the first kind of approach. It entails the study of one or

more acoustic models of some theoretical coherence and the implementation of algorithms capable of

reproducing them on the oomputex.n In genelta.!, this is the case with most well-known synthesis methods,

research (De Poli et al., 1991).
Less has been done in the non-standard a
N 5 pproach, although many composers have devel
utlhze.d a variety of methods (e.g. G.M.Koenig, I.Xenakis, and H.Brin). In this perspective, th(:g:disaﬁg
fﬁe—exnsung‘ acoustic model, while the synthesis process is of the composer's own invention aiming at
e &I;pest mtegmtlxon b;teween sound synthesis and the compositional process. '
appropriately understood, non-standard methods Tepresent an approach of mi i
. s . W t
modelling of sound, a perspective of sonic design also proper to instanppoes of asynccl:xnoucs ug;n%ﬁ

S)"nthesm/.processing and othc;r tccl_nmques based on microstructural representation of sound in the

structure (Truax, 1990a), between the composer's model j j i
scale musical design (Di Seipio, 19.93). PO! models of sonic materials and hisfher models of large

A firesh perspective of non-standard synthesis

epiphenomenon of a dynamical process captured in a model of musi i i
¢ : i sical design (i.c.: at some macro-
Ctt:unllgé)ral scale), in computer music the properties of the sonic structure - whose local Gestalt is usually
: timbre - should themse}ves be understood as epiphenomena of micro-temporal compositional
processes, unrelated to acoustic models but capable of modelling a phenomenon of morphological
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emergence (Di Scipio, 1994). The problem raises about what may ever be the relevant features in such
kind of models.

A possible answer comes from the mathematical modelling of complex systems. In chaos theory, it
is shown that simple iterated difference equation systems can capture the details of rich, dynamical
phenomena showing peculiar qualitative emergent properties of macrostructure (May, 1977; Collet &
Eckmann, 1980). In the following we describe what can be called synthesis by functional iteration -
drawing from terminology introduced by Mitchell Feigenbaum in an early article on nonlinear systems
(1980). The effort consists in exploiting the notion of iferation as a source of self-organization in the
dynamical behavior of sound.

Theoretical basis of sound synthesis by functional iterations

The formal frame of our mathematical model can be described as follows: we shall call

ACR the set of "initial values" for our iterations;

G C ®@m the set of parameters of the particular map(s) considered;

BCHh the set of samples of the sound signal finally generated,
and consider the following cartesian product:

AXGCRxR
Let F be a map defined as

F. AXG - B

x{ah - Fixia) (faj} = aj.ay,...2,)

which can be considered as a parameter-dependent function which maps from A to B with g; as varying
parameters. By fixing a set of m real parameters (a point of G) we have:

f: A - B
x = f(x)

f(x) = F(x; ay...a).
By considering g; a sequence of points from G, we get a sequence of maps /. Then, if
BCA

we can construct the iteration of the function f - thereby introducing the operation called functional
iteration - by repeatedly applying f'to itself » times:

Bx) = () )) = Eofo - of(x)

Given a sequence of initial values x,; € A and a sequence of parameter sets g; € G and correspoding
functions f;, a discrete time series can be computed where the i-th sample is the i-th n-iterate of x, ; :

, Soit = Pa0oi) = Gy o Gl ) o)
time ¢ Xai = (xo,i) =5 & (.. & X ) D
Xgir =G0 = G Guoup) -0

In order to create time series with complex behavior, we must choose a nonlinear £ In the following
section, we introduce and study the main properties of one such function. However, it is clear that the
relevant point here is the process of functional iteration, more than the function we work with: "Yer,
precisely because the same operation is reapplied {...} self-consistent patterns might emerge where the
consistency is determined by the key notion of iteration and not by the particular function performing
the iterates” (Feigenbaum, 1980).
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The "sin map" model

We have chosen to study the application of the "monoparametric” map (m = 1) defined by

F:[-#/2,%72} X [04] —(11)

(x, 1) - sin(rx)

whose explicit iterated form is written as

Xy i = sin(; K1)
We set A = [-%/2,7/2] because of the fact that, given the periodicity of the sin function, a larger space
would only return trajectories already achievable starting from within [-#/2,#%/2], with the exception of
xg, of course. This is becasue the Ist iterate would anyway fall in the interval [-1,1], completely covered
by sin(rx) for x; in [-#/2,%/2] and » => 1. Moreover, we set G = {0,4] because any larger value in »

would only provide dynamical behaviors already achievable with » just below 4. Following are four
examples showing the graphs of sin(rx) with increasing values of 7.

L

The behavior of the iterated process can be observed by calcdlating the n-iterate of some x, for linearly
increasing ». In the leftmost figure, the 5th, 6th and 7th iterates are shown as » moves from 2 to 4; in the
righmost, the 8th, 9th and 10th iterates are plotted. In all cases we set x,=0.1.

SRy

2 22 4 26 2 3 32 ) 4 27 a2 28 28 28 3 Y] a6 as 4
—

Observe that the higher is the iterate and the more dynamical is the evolution of the signal traced by
successive n-iterates. To our knowledge, the oscillating trajectories traced by such sequences of n-iterates
have not been explicitly addressed by any scientifical study. This means that our applications is in need
of further theoretical insight into mathematical details which may be unknown as yet. (This is the topic
of a forthcoming study).

When we consider a larger number of iterations, the initial datum x,, is forgotten as the process
goes on (one cannot say, by any analytical means, where in the interval [-#/2,7/2] the process started
from). Moreover, transient phases to any attractor disappear; indeed, the calculation actually traces the
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bifurcation diagram which characterizes the dynamical behavior of the model. Followin is a pl
! 2 . t of
100th iterate of x=0.1 for » going from 2 to 4. Blsaplotofthe

A simple implementation

As typical to non-standard methods, the process of synthesis by functional iterations is only conceivable
and explorable by implementing a specific algorithmic structure on the computer. The basic procedure is
relatively simple and straightforward. However, notice that, since # is not defined before the synthesis
starts (it's up to the user the decision of what iteratc is to generate the sound signal) we have a loop of
variable length within the computation of each single sample; therefore, for real-time applications we
must be able to adjust the computation in order to mantain a stable sampling rate.

- An other point worth of being mentioned is that for » in the interval [0,7] the signal is only
positive. We suggest that a conditional control be adopted in order to activate a normalization of the
mgnal in the range [-1,1] as far as » < 7 and to switch to no normalization when r > 7. (In most cases
this does not produce any noticeable discontinuity, given that » =  is itself a somewhat chaotic area in
the bifurcation diagram).

) The following is a very simple C program implementing functional iteration synthesis with
time-varying r and constant x,. (The normalization problem is not taken into account, here).

#include <math.h>
#include <stdio.h>
int cot=32767; /* max amp */
int dur=22050; /* number of output samples */
double nlos{double x, double r, int n); /*prototype*/
void audio(void);
void main{()
{
int k, outsam, n, i time=0;
double icr, rm_start‘,' r_end, x0, r;
printf("input start r, end r, start X, considered iterate: \n");
§canf("%lf 3Lf 31f 3d ",&r_start,sr_end,&xC,&n);
ler={r_end-r_start)/dur; -
for{r=r_start;r < r_end; r += icr) {
i_time++;
outsam=nlos(x0, r, n)*cot};
printf("sample 3%d time %d current r %f \n", outsam, i time, r};
audio (); /* send to audio output(file) */ -
}/* end for */
}1/% end main */

double nlos{double x, double r, int n} {
int k; i
for{k=0; k<n; k++) {
x=sin(r*x});
} /% end for */
return(x};

void audioc{void)
{
, /* audio output code */
Small modifications in this short piece of code would make it work as an opcode of CSOUND. Actually,

the algorithm can be itself rendered with existing CSOUND opeodes, but of course this would make the
synthesis slower.

| Simpdésio Brasileiro de Computacio e Miisica

19

Exploring the phase space of the "sin map" model

As observable in the bifurcation diagram, moving r in its space [0,4] determines the kind of global
evolution of the generated signal, ranging from very smooth curves (e.g. » = 2) to a more acrive and
complex behavior (e.g. » = 4), passing through many transitory phases corresponding to periodical
cycles. A most important aspect of signals thus synthesized is an high dependency on the particular
region of the phase space [-#/2,7/2] X [0,4] being visited. As suggested above, each orbit in the space
corresponds to a signal of particular properties. In the synthesis process, we can

@ change » while keeping xq constant; this is what the C program above does, but we could also
e change x( while keeping » constant; and
e change both r and x(y according to some defined driving function,

Moreover, in all these cases we can choose an arbitrary n-iterate to generate the signal - although, in
practice, useful values of » are bound up to few possibilities (see discussion below). Simply speaking, the
three control strategies result respectively in

e rapid changes of global structural properties in the sound signal (highly dynamical spectra);
s innumerable signals of the very same properties (as captured by ),
e a complex mixture of these two.

Notice, finally, that the higher is the iterate and the more "active" the sound synthesized. Looking at the
following 3D graphs, one may grasp some idea of how the sound signal changes as we move in the
phase space. Here the n-iterates of f{r,x)=sin(rx) are plotted over a particular region in the phase space [-
#/2,7/2] X [0,4], namely in the region {3,3.5] X [.2,.4]. Each single graph relates to a different iterate,
ie. n=4,n=35n=6andn =7 (we used such small values not to complicate the graphical rendition
too much).
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Typically, the morphological properties of sounds generated with functional iteration synthesis are in a
flux of continual variation through time, but include both local and global correlation; especiaily when
very "active” (» > 3, n > 8), they are perceived as textural sonic phenomena, rich of sudden transitions,
turbolence and, eventually, broad-band noise. If we use closed orbits in the phase space (by cycling or
"modulating” either r or x,) periodic signals can be obtained. Thus, the sounding resuits can range from
pseudo-random (but locally and globally correlated) sound signals to sounds of harmonic spectra.

Before ending this section, we should recall that sensitive dependency on the initial conditions
is the essential feature of chaotic systems. A measure that would enable us to characterize such feature in
our model - hence the correlation degree within a single signal and among signals - can be compuied in
terms of the Lyapunov coefficients reflecting the exponentially growing distance of trajectories that start
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with near but distinct x,. In short, such a measure would provide a means to gain control over the
predictabilty of the system behavior, thus making possible the user's meaningful choices of . Indeed, in
many cases higher iterates will certainly not result into sounds of more interesting structural properties -
though they will certainly result in a longer computation time. Sometimes a large n may even destroy in
the signal any observable relation with the signal's generating orbit in the phase space.

Some conclusions

Relavant theoretical details and the empirical use of synthesis by functional iteration must be both
investigated in more depth. This is necessary, although a most peculiar aspect of such approach to sound
synthesis lies exactly in the possibility of an explorative, nonlinear style of sonic design. Indeed, it is
dubious that further analytical knowledge would make the model of better use in a linear and completely
deterministic approach. Functional iteration synthesis provide indeterministic models of sonic material:
the composer must learn his/her strategy by interacting with a source of structured information activated
at the level of the microstructure of music, within and through the sound.

We think that the concept of iteration, being a concrete source of unpredictable but self-
organized, consistent behavior, can capture large-scale design features which are particularly useful
when one works at the microstructural level of sound. Methods of chaos theory have been already
proposed and used as models of syntactical articulation of music (Pressing, 1988) and as powerful
control structures of granular synthesis techniques (Di Scipio, 1990; Truax, 1990b). Our study proposes
the extension of this approach to the level of the sample itself, by operationalizing a model of
sonological emergence which projects the compositional process down to the micro-time scale in the
musical structure. In so doing, it also implies a blurring of the conventional distinction between sound
and structure, since with this kind of model the composer can generate entire fabrics of sound events
and extended sonic textures that can hardly be perceived and conceived as separate partial components
of the musical structure.
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Abstract

This paper explains a system developed at ths Laporatorlio de Invesfigaci(‘)n. y
Produccién Musical (LIPM), for modular programming gf instruments in cmusic.
The system allows users to build up their own patche§ using ready-made pieces of
code, in a self-explanatory process. Every musician trained in .hard\.vare synthesizers
programming can easily develop a complex instrument following sxml')le rules, what
turns it useful both for composition and for teaching software syn.thems. T hc? system
allows coherent connections between envelope generators, devices for pitch ar.1d
amplitude modulation, and for additive, subtractive, FM and wave.shapmg synthesis.
As it is made exclusively of cmusic operators, users can add their own modules to

follow their particular needs.

What it is

AMI (Aid of Modular Instruments) is an attempt to develop a user-friendly interface for instrument

rogramming in cmusic. . ' ‘
P gThe system allows the user to design complex instruments by adding simple modules. These modules are

easily understood by every musician trained in hardware synthesizers programming, and their names are self-

explanatory.

What it does

In its present state, the system allows coherent connections between envelope generators, devxc.:es. for' pltC};
and amplitude modulation, for additive, subtractive, FM and waveshaping synthesis, and for spatialization o

sound.

User interface

Users build up their own patches by assembling modules, that are ready_—mz}de pieces qt’ 'code. Thedsyst;em
guarantees the coherence of connections between modules. By following certain simple rules it is easy to develop
a complex instrument, because the constitutive parts are already debugged.

The resultant instrument is later invoked from the score by means of a macro.




