
ELSE Library for Pure Data
Porres, Alexandre Torres

EL Locus Solus (independent center)
São Paulo, SP

el.locus.solus@gmail.com

Abstract

The main computer music languages for
Live Electronics nowadays are: Max, Pure Data
(or just “Pd”) & SuperCollider. In comparison
to the other two, Pd offers a very limited set of
functions in its main distribution (a.k.a “Pd
vanilla”), relying heavily on external libraries as
add-ons.

This paper describes the ELSE external
library for Pd, which brings elements that were
missing in Pd and its current external libraries
when compared to other computer music
environments. It also includes functionalities
not available elsewhere and revises elementary
building blocks of computer music already
found in Pd or other systems, such as in the
design of oscillators.

The ELSE library provides a large
collection of objects that were carefully and
meticulously designed to improve the patching
experience for Pd, allowing some techniques of
computer music to be implemented more
conveniently.

It is also part of a didactic project for
computer music that uses Pd to cover a wide
range of computer music techniques and DSP
topics in a tutorial with over 350 examples. The
final goal is to strongly depend on ELSE to
patch the examples from the tutorial.

1. Paper Structure.

Before describing and discussing the
ELSE library, the paper first contextualizes the
current state of Pd in section 2, so it is made
clear where and how the ELSE library fits in.

Section 3 describes the motivations and
goals of the ELSE library as a counterpoint to
the previous section. Section 4 describes details
from the and section 5 presents the final
discussion and further work.

2. Contextualization: The current state of
Pure Data and its external libraries.

Pure Data1 is a visual programming
language, quite similar to Cycling 74’s Max2,
which is a commercial software. One of the
main differences is that Pd is free an open
source. Other open source environments for
computer music (such as Csound3, Chuck4,
SuperCollider5) are not visual, but textual
instead. This makes Pd the only of its kind (an
open source visual programming language), not
to mention one of the most widely used.

An indicative of the user base population
of these systems may be the size of its
community on Facebook. The Pure Data
community6 has over 11.000 members, while
SuperCollider’s7 has less than 5.000. Max8,
despite being a commercial software, still has
the biggest community, with over 14.000 users.

The visual programing paradigm may be
more intuitive and comfortable for non
programmers (such as artists and musicians),
making it more popular and known outside the
computer music niche. This may explain the
great number of the user base of both Pd and
Max over SuperCollider. But a big user base
does not imply in a proportionally large
community of developers.

Most of the people involved in the
SuperCollider community are experienced
programmers, so they can collaborate much
more to its development. Not surprisingly, the
SuperCollider community is much more active
than Pd’s. Not only that, but its development is

1 Link: https://puredata.info/
2 Link: https://cycling74.com/products/max
3 Link: http://csound.github.io/
4 Link: http://chuck.cs.princeton.edu/
5 Link: http://supercollider.github.io/
6 Link: www.facebook.com/groups/4729684494/
7 Link: www.facebook.com/groups/supercollider/
8 Link: www.facebook.com/groups/maxmspjitter/

16th Brazilian Symposium on Computer Music SBCM 2017

São Paulo – Brazil 41

not centralized, while the development of the
main distribution of Pure Data (Pd Vanilla) has
always been centralized around Miller Puckette,
its main author and distributor.

Pd Vanilla comes with a minimal set of
objects. Miller Puckette has been developing Pd
for over 20 years, in a notoriously slow pace,
but as part of a conscious decision. Miller will
only include a fix or a new functionality to Pd
when he is certain that it is the best choice and
won’t need changes in the future. He aims for a
canonical implementation of functions and is
concerned that Pd patches will all run 30 years
from now9.

This orientation ends up promoting not
only the development of external libraries for
Pure Data, but also other distributions – or
“flavors” – of Pd. One important parallel
distribution named “Pd Extended” appeared in
the early 2000’s. It provided, besides the basic
Pd Vanilla set of objects and GUI, a few other
functionalities and dozens of external libraries
already included.

Pd Extended had a major role in making
Pd popular, but it has unfortunately been
abandoned by its main author: Hans-Christoph
Steiner. Its latest version, released in 2013, is
very outdated when compared to recent Pd
Vanilla developments. That notwithstanding,
many still use Pd Extended as it is still
distributed and considered convenient.

The main feature of Pd Extended is surely
its provided external libraries. Therefore, with
the abandonment of Pd Extended, the Pd
community decided it was best to, instead of
further developing on it, make it easier to install
the external libraries from Pd Extended into Pd
Vanilla. As a result, Pd now has an external
installer since version 0.47-0. Although this did
partially compensate the abandonment of the Pd
Extended distribution, there is a bigger
underlining issue, which is the fact that the vast
majority of the external libraries available in Pd
Extended hasn’t had a maintainer or developer
for a long time.

Thus, even before Pd Extended’s last
release, most of its main features and

9 As stated in this video from the Pd Conference 2016,
about the future of Pd. Specially from 53:52 up to
59:30 Link: https://www.youtube.com/watch?
v=cAWFk1PPTtk&feature=em-lss

differentials had been long abandoned.
Furthermore, there was not a big criteria for
including libraries into Pd Extended. This
means that some external libraries were
included still in an experimental or early stage
of development and were never further
developed. The outcome is that you can easily
find bugs and badly documented externals. So
fixing, maintaining and developing for such
libraries would be more important than bringing
Pd Extended back to life.

However, so to speak, Pd-Extended has
recently reincarnated as “Pd-L2ork 2.0 / Purr
Data”[1], which started as a fork of Pd
Extended in 2009 and became the Pd-L2ork
distribution (but only for Linux). The Pd-L2ork
2.0 version is cross platform and was released
in early 2017 by the name “Purr Data”. It does
have all the libraries and features from Pd
Extended plus more of its own. But the issue of
including mostly abandoned libraries it
inherited from Pd Extended still remains.

3. ELSE’s motivation and goal

Pd Vanilla offers a minimal package for
computer music but has many external libraries
that can be easily installed via its external
manager, not to mention the Purr Data
distribution, which provides several external
objects already built-in. As follows, one could
reason that Pd operates in a modular structure,
relying on declaring extra packages that may be
imported when needed. In this way, external
libraries should compensate the lack of essential
features in Pure Data Vanilla, not leaving it
behind other environments.

However, that is not what we have in
practice. Besides the fact that most libraries are
simply abandoned nowadays, the collection of
external libraries in Pd Extended presents a big
kludge instead of an organized set of dedicated
external packages. Most are just relatively small
random sets of functions, which often carry
virtually the same functionality of other
externals. Hence, Pd’s externals libraries needed
a major overhaul and revision in order for it to
claim an actual modular structure.

From the few libraries in Pd Extended
that are still in active development, the main
and largest one is Cyclone. Though it did spend
about a decade with no significant development,

SBCM 2017 16th Brazilian Symposium on Computer Music

42 São Paulo – Brazil

it went through new development phases
recently, and it’s under the maintenance of
Alexandre Torres Porres, Derek Kwan and Matt
Barber since february 2016 [2].

Cyclone clones MAX/MSP to Pure Data,
being popular for providing some level of
compatibility between the two environments. Its
latest version (cyclone 0.3, still in the beta
phase) has about 200 objects and should be
merged to Purr Data soon.

In this context, the ELSE library aspires
to provide a substitute for many abandoned Pd
libraries, in a quite ambitious goal to centralize
many essential elements into a single library,
getting rid of the need to search amongst
several libraries for a simple and essential
object.

The initial motivation of the ELSE library
was actually to include important functions that
were not available in Pd Extended/Purr Data
libraries. This need emerged from an
educational project, which is the development
of a tutorial for computer music based on Pure
Data by the author10, which now has over 350
examples and covers a wide range of computer
music techniques and DSP topics [3-4].

The author has been developing this
original tutorial to teach computer music for 9
years, up to a point where all the relevant
existing objects in Pd Extended were used up,
so there was a need for something “else”.

A parallel idea was to clone the UGENs
from SuperCollider, creating a dedicated
library of clones such as Cyclone. But this was
shortly abandoned as it would constrain to the
same architecture as the original UGENs, and
soon it was decided that these functions should
have different design choices. One reason is the
consideration that some of the original design
choices were not good, and the other one is that
there would have to be adaptations to the
context of the Pd environment anyway.
therefore, this idea was merged into the ELSE
project, although a good name for a
SuperCollider clone library was already thought
of (SuperClonider).

A further expansion of the original scope
– as already mentioned – includes the revision
of many externals from Pd Extended. This

10 Available for download at:
<https://github.com/porres/LiveElectronicsTutorial>

decision was motivated by the fact that such
externals have been abandoned and could
benefit from revisions into a new library, so the
didactic material by the author would rely
mostly on externals maintained by himself.

Now, since the author is also a main
collaborator of Cyclone11, the idea is that the
didactic material will rely heavily on both of
these libraries. But for the great majority of
other externals from Pd Extended used in the
examples, the ultimate goal is to replace them
all with a newly written external from ELSE.

It needs to be noted that even functions
from objects already available in Cyclone or Pd
Vanilla are also being revised by objects in
ELSE, such as the case with oscillators,
described in the next section.

4. The ELSE library

This section describes some of the
features and objects from the ELSE library. At
the time of its writing, the project is still in an
alpha stage and counts over 110 objects, but a
first beta release is planned to be made
available by the time of the SBCM
conference12. The following subsections
describe important objects, groups of objects,
and features of the ELSE library.

The name of the library stands for EL
Locus Solus’ Externals, where “EL Locus
Solus” is the independent center run by the
author. It functions as a production agency and
a school that offers computer music courses13.

4.1 Oscillators

The oscillators available in ELSE bring
together functionalities not available elsewhere.
Not only in other Pd externals, Max’s and
SuperCollider’s internal functions, but also in
other computer music languages such as
Csound and Chuck and even in a modular
environment like Reaktor14. Namely, they offer

11 The latest releases of Cyclone are available at:
<https://github.com/porres/pd-cyclone>

12 The latest releases of ELSE are available at:
<https://github.com/porres/pd-else>

13 Link: <http://alexandre-torres.wixsite.com/el-locus-
solus>

14 Find Reaktor at <https://www.native-
instruments.com/en/products/komplete/synths/reaktor
-6/>

16th Brazilian Symposium on Computer Music SBCM 2017

São Paulo – Brazil 43

hard sync, phase modulation and accept
negative frequencies.

The basic oscillators in Pure Data (such
as [osc~]) have a secondary control inlet for
reseting the phase. If it were a signal inlet, a
signal input could trigger the oscillator to
perfectly reset in sync to another frequency (i.e.
hard sync technique).

The oscillators in ELSE follow the usual
design from vanilla objects, in which the first
inlet controls the frequency and the first
secondary inlet resets the phase. The phase can
be reseted in the same way as with [osc~], with
a control message, but it also works with a
signal impulse with a different logic.

Having a separate action for both signal
input (sync at impulses) and control messages
poses a challenge. It is not only unusual in Pd
but it’s also very tricky to implement it in the
Pd API. For that, the author applied a technique
developed by Matt Barber for Cyclone,
nicknamed “magic” [2].

Figure 1: Oscillators in ELSE

4.2 Sample accuracy and impulses

Many Pure Data audio objects are unable
to be triggered with sample precision/accuracy.
The same can be said about Max, though to a

lesser extent. Dealing with sample accurate
processes in both Max and Pd is tricky, being
more common to use control messages (either
general control messages or bangs) instead.
This is surely more efficient computationally,
but some computer techniques depend on
controlling parameters at audio rate – such as
“hard sync”.

Implementing “hard sync” in Pd is not
impossible, but it’s just not elegant, as it is a
workaround that could be avoided if only the
oscillators were designed to accept a sample
accurate phase reset control.

Objects from the ELSE library are
strongly aimed to sample accurate processes,
for which an impulse oscillator is very
important. Objects can then be programmed to
respond when a trigger signal is different than
0, or when they transition from 0 to a positive
value, which is exactly what an impulse
oscillator provides at a fixed rate, so it can be
thought of as an audio rate metronome.

Since Pd Vanilla was not well planned for
sample accurate processes, it does not have an
impulse oscillator. Max’s [train~] (also
available in Cyclone) is the closest thing to it,
but not an actual oscillator.

SuperCollider is more oriented towards
sample accurate processes, and thus has an
Impulse oscillator UGEN, but it does not accept
negative frequencies. Pd Extended/Purr Data
has [impulse~], an impulse oscillator from the
sigpack library, but it has bugs and also does
not accept negative frequencies.

Therefore, [impulse~] is one of the
objects already available in the Pd ecosystem
that needed a revision inside ELSE. It is one of
the few that has the same name as a pre existing
external. But in such cases, the provided
externals in ELSE are fully backwards
compatible to the existing ones.

Thus, [impulse~] from ELSE solves the
existing bugs in [impulse~] from sigpack and
provides more features (negative frequencies,
phase modulation and hard sync) – note that the
[impulse~] object in ELSE can also be
instantiated as [imp~], for short, as in figure 1.

Following this sample accurate structure,
many objects in ELSE are triggered by
impulses, such as the oscillators’ hard sync
inlet, or negative to positive transitions. Not

SBCM 2017 16th Brazilian Symposium on Computer Music

44 São Paulo – Brazil

only that, but other objects in ELSE also
generate impulses as result of signal analysis,
such as [zerocross~] (when detecting zero
crossings), [changed~] (when detecting signal
change) and more, see figure 2 below.

Figure 2: Objects that either respond
to or generate impulses.

4.3 [sh~] and [downsample~]

The [sh~] object from ELSE is a sample
and hold module that is triggered by impulses.
Any sample and hold object needs a trigger
signal input to make it “sample an input value
and then hold it”. Therefore, it is inherently a
sample accurate process.

Pd Vanilla has its own sample and hold
object, named [samphold~]. But since Pd
Vanilla isn’t aimed towards sample accurate
processes and lacks an impulse generator,
[samphold~] was designed to be triggered with
[phasor~].

This is not a conventional design, but a
workaround in order to adapt a sample and hold
unit in an environment that lacks impulse
trigger signals. The way [samphold~] works is

that it is triggered whenever its right inlet input
decreases in value. This happens with [phasor~]
at period transitions, allowing it to trigger
[samphold~] at that moment, but only when it
has a positive frequency smaller than the
sample rate.

The most critic issue is that [phasor~] is
useless to trigger [samphold~] when it is
running with negative frequencies, since what
happens in negative frequencies is that
[phasor~] inverts its direction and outputs a
downwards ramp instead. Therefore, apart from
the period transitions, it always outputs a value
smaller than the previous one – exactly what
triggers [samphold~], so it can’t work that way.

Max’s sample and hold object is [sah~],
also available in Pd via Cyclone. It has a more
common design, allowing it to be triggered with
an impulse oscillator – since it is triggered
when the signal raises above a given threshold.
The [sah~] object also requires that the signal
falls below the threshold so it can be triggered
again. Therefore, the highest rate [sah~] can be
triggered is the nyquist frequency.

The [sh~] object from ELSE is similar to
[sah~], but it may also not require the signal to
fall below the threshold value (this is actually
done by default). This allows it to be triggered
with an impulse oscillator up to the sample rate
frequency. As such, it may also act as a “gate or
hold”, where instead of a trigger signal, you
have a gate signal that allows the input signal
continuously through when it is higher than the
specified threshold. This is, in fact, similar to
SuperCollider’s Gate UGEN.

The [sh~] object combines features from
SuperCollider’s Gate, Max’s [sah~] and Pd’s
[samphold~], making it the most complete and
versatile sample and hold object design. The
conjunction of ELSE’s [imp~] and [sh~] objects
also has more potential than previously
available.

One possible application is
downsampling, where it can go up to the sample
rate frequency (positive or negative). But the
[downsample~] object from ELSE already does
this for you. One can think of it as a sample and
hold object that only needs to receive a trigger
rate in hertz (negative frequencies also
accepted). So you’d only need to implement
downsampling with [imp~] and [sh~] if you

16th Brazilian Symposium on Computer Music SBCM 2017

São Paulo – Brazil 45

wish to use other features from these two
objects. One difference, though, is that
[downsample~] can also interpolate between
values.

Figure 3: [downsample~] and an
equivalent patch with [sh~] and [imp~]

4.4 [pimp~]

The [pimp~] object from ELSE is a
combination of Pd Vanilla’s [phasor~] and
ELSE’s [imp~] (or [impulse~]). It's basically
[imp~] with an extra phase output in the left
outlet. Conversely, it can be thought as a
[phasor~] with an extra impulse output in the
right outlet.

The impulse happens at every phase
period transition (in both negative or positive
frequencies/directions). Like [imp~], [pimp~]
also has inlets for phase modulation and sync.

[pimp~] is very convenient for both
driving a process with its phase output (such as
reading a sample or envelope wavetable) and
also triggering other objects at period
transitions.

The need for such an object was found
when dealing with granulation patches. For
instance, the B13.sampler.overlap example,
from the audio examples from Miller Puckette’s
book [5] (which are available in the Pd Vanilla
distribution) uses [phasor~] to generate
overlapping envelopes and also trigger
[samphold~] objects, which samples new
parameter values at the end of the envelope.

This is the basis of other granular based
patches such as the time stretch/compress with
independent pitch shifting from the next

example in the series (B14.sampler.rockafella).
But this is only possible if you’re reading

the table/sample in the original direction. The
patch does not work if you’re reading the table
backwards, as it would require the [phasor~] to
run at a negative frequency, and [samphold~]
simply does not work that way, as already
explained.

The workaround here would be to analyze
the signal from [phasor~] and generate an
impulse signal when transitioning from one
period to the next, in both positive or negative
frequencies. But even so, that would require a
Pd external such as [sah~] for the sample and
hold function, since [samphold~] cannot be
triggered like that.

The way you can generate impulses from
[phasor~]’s period transitions, wether its
frequency is positive or not, is by realizing that
whenever it reaches the end of its period, there
is a big leap in value. So you can measure the
absolute difference between the current and the
last value, and we can capture every period
transitions up to the nyquist frequency (positive
or negative) whenever it is higher than or equal
to 0.5.

Figure 4: Example of granulation by getting an
impulse from period transitions of a [phasor~]

and relying on the [sah~] external.

SBCM 2017 16th Brazilian Symposium on Computer Music

46 São Paulo – Brazil

This is not unreasonably hard to
implement in Pd and can be done just with one
[fexpr~] object (see figure 4 above), but it’s just
not elegant. Again, all these workarounds could
be avoided if simply the design choices of the
objects were better.

Figure 5: a simplification of the granular patch
by adopting objects from ELSE such as [pimp~]

Objects from the ELSE library previously
mentioned can simplify this, such as [imp~] in
conjunction with [sh~] or just [downsample~].
But [pimp~] is also provided as a single and
more elegant solution for this particular
purpose. Check the adaptation in figure 5, and
how the patch is now much cleaner and also
able to include two overlapping grains into a
more concise space.

4.5 Chaotic and Stochastic generators

All of the chaotic/stochastic generators in
SuperCollider are being cloned. For now, these
are: [brown~], [clipnoise~], [crackle~], [cusp~],
[gbman~], [henon~], [lincong~], [logistic~],
[latoocarfian~], [quad~], [standard~]. Apart
from those objects available in SuperCollider,
the Ikeda attractor has also been implemented
as an extra generator (named [ikeda~]).

The [lfnoise~] object is a low frequency
chaotic generator. There are similar objects to
[lfnoise~] for Pd, but with less functionalities.
In Max’s (and Cyclone) you have [rand~]. The

zexy library for Pd has [noish~] and [noisi~].
SuperCollider has the LFNoise generators. But
[lfnoise~] differs for accepting negative
frequencies and allowing sync with impulses,
following the same structure of ELSE’s
oscillators. Else also provides [random~], which
generates random signal values when receiving
a trigger signal.

4.6 Filters

Pd Vanilla lack many basic filters, relying
mostly on [biquad~] to generate general second
order filters. But even so, it lacks a biquad
coefficient generator and only accepts control
input for the coefficients.

The ggee library for Pd offers several
generators for [biquad~] – covering elementary
filters such as lowpass, lowshelf, bandpass, and
so on – but the parameters are still constrained
to control messages, not allowing signal rates
for simple filter sweep patches with a LFO.

Max also relies on a [biquad~] object, but
at least it has signal rate input and offers a
biquad coefficient generator with signal rate
inlets: [filtercoeff~]. Both have been recently
cloned into Cyclone, but it was considered
necessary to create simpler and friendlier
solutions for such elementary filters in ELSE,
which would be single objects for each filter
type.

Figure 6: second order filters from ELSE

Most of such filters are made available in
SuperCollider’s BEQSuite group of filters as
single classes. The difference in ELSE’s objects
is that, instead of a reciprocal Q, it has a more
intuitive and friendly design to allow the
resonance parameter to be set in either Q or
bandwidth in octaves. The filter formulas are

16th Brazilian Symposium on Computer Music SBCM 2017

São Paulo – Brazil 47

from Robert Bristow-Johnson’s work15.

5. Final Discussion and further work

This paper briefly presents and describes
the ELSE library for Pure Data. The
development of this library follows an
experience of over a decade in patching with Pd
Extended, and about 9 years of developing
didactic material based on Pd Extended patches.

More recently, the author has also studied
and used SuperCollider and Max to teach
computer music. Throughout the course of these
years of patching and teaching a wide range of
computer music techniques with the existing
tools in these three environments, the author
accumulated many issues and frustrations with
the design of the available building blocks.

A discussion and details behind the
creation of some of the externals is given in this
paper. The discussion could be furtherly
detailed in order to describe every decision
behind the design of all the objects in the
library, but the given examples make the
general purpose clear, which is the need found
by experience to improve some elementary
building blocks of computer music and include
new functionalities that were missing.

Given the current state of Pure Data, with
many of the existing libraries abandoned, the
development of this library also aims to replace
the need of many of the existing externals.

The author has also discussed the
inclusion of ELSE in Purr Data as a newly
available library as soon as a more stable
release of ELSE is made available, and after
Cyclone is first included there.

The ELSE library has a didactic
motivation. Its ultimate goal is to be the applied
in the development of computer music
examples from the didactic material developed
by the author, alongside the Cyclone library,
also under the maintenance of the author and
already being included in Purr Data soon in its
latest state.

Currently, over 350 examples have been
developed making extensive usage of available
objects in Pd Extended. As soon as a first

15 Cookbook formulae for audio equalizer biquad filter
coefficients, by Robert Bristow-Johnson, available in
<http://shepazu.github.io/Audio-EQ-Cookbook/audio-
eq-cookbook.html>.

version of the ELSE library is made available
and included in Purr Data, the next step is to
adapt this didactic work to Purr Data and start
relying on existing externals from ELSE more
and more.

Short term plans for ELSE include
revising the documentation and adding band
limited functionalities for the oscillators. As
soon as this is finished, a final 1.0 version may
be released.

Acknowledgements

Flávio Luiz Schiavoni, for being the first to help
me get into the art of coding externals for Pd
and for coding the first version of [median~],
the first object from ELSE to be coded. Derek
Kwan and Matt Barber, my fellow collaborators
in Cyclone, that also teach me so much and help
me a lot. Ivica Bukvic and Jonathan Wilkes for
being open to accept my ELSE library in Purr
Data as soon as it is stable and ready for it.
Miller Puckette, for being awesome and being
the giant who created Pure Data and Max, plus
all the others in the Pd Community, who are
always very helpful.

References

[1] I. Bukvic, J. Wilkes and A. Graef, Latest
developments with Pd-L2Ork and its
Development Branch Purr-Data, PdCon16,
NYU, 2016.

[2] A. Porres, D. Kwan and M. Barber, Cloning
Max/MSP Objects: a Proposal for the Upgrade
of Cyclone, PdCon16, NYU, 2016.

[3] A. Porres, Teaching Pd and using it to
teach: yet another didactic material, PdCon09,
São Paulo, 2009.

[4] A. Porres, Patches de Pd para Computação
Musical, Revista Vórtex, Curitiba, v.2, n.2,
2014, p.198-200.

[5] M. Puckette The Theory and Technique of
Electronic Music. World Scientific Press, 2006.

SBCM 2017 16th Brazilian Symposium on Computer Music

48 São Paulo – Brazil

