
Timbre spaces with sparse autoencoders
Pablo E. Riera1 , Manuel C. Eguı́a1 , Matı́as Zabaljáuregui2

1Laboratorio de acústica y percepción sonora
Escuela Universitaria de Artes, Universidad Nacional de Quilmes

Roque Sáenz Peña 352, Bernal Buenos Aires, Argentina

2Laboratorio de Inteligencia Artificial Aplicada
Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

Pabellón I, Ciudad Universitaria, Ciudad de Buenos Aires, Argentina.

pablo.riera@gmail.com

Abstract

Timbre perception studies emphasize the mul-
tidimensional nature of timbre and many rely
on dimensionality reduction techniques to visu-
alize perceptual similarity evaluations or sound
descriptors that encompass timbre perception. In
this work, we explore the uses of sparse au-
toencoders to perform unsupervised learning and
nonlinear dimensionality reduction to extract a
spectral code representation that is used for tim-
bre analysis and visualization. Using only one
music fragment in the autoencoder learning pro-
cess generates an overfitted reconstruction but
gives a low dimensional neuronal activity pattern
which encodes all the sound spectrum informa-
tion and could be used for synthesis as a neuronal
music score.

1. Introduction

Timbre is widely recognized as a highly com-
plex and multidimensional percept that cannot be
(or hardly can be) accounted in terms of a few
quantitative descriptors [1][2]. The process of
timbre perception is closely related to the tasks
of sound identification and classification and is
concomitant to the hierarchical organization of
sensory systems [3]. A common approach to
tackle this issue in computational studies consists
of calculating some sound descriptors relevant to
timbre perception, such as Mel-frequency Cep-
stral Coefficients (MFCC) [4] or Spectral Con-
trast [5] and then applying dimensionality reduc-
tion techniques for visualization, as multidimen-
sional scaling [6], isomaps [7] and self-organized
maps [8], among others.

On the other hand, recent advances in deep
neural networks, in which several layers of nodes
are used to build up progressively more abstract
representations of the inputs, have contributed to
develop a new approach to this problem, yielded
promising results in music related tasks such
as instrument classification [9][10], timbre anal-
ysis [11], genre classification [12][13], among
others, [14][15] and sample based sound syn-
thesis [16]. Several architectures and learning
procedures have proven successful at process-
ing audio data, in particular, we can mention
recent uses of autoencoders in audio synthesis
[17][18], statistical parametric speech synthe-
sis [19], adaptive reduced-dimensionality equal-
ization [20], and denoising and dereverberation
[21]. As an alternative to autoencoders, linear
methods like sparse coding and nonnegative ma-
trix factorization have also been used for sound
classification [22] and source separation [23].

Autoencoders are a type of neural network
having a coding stage and a decoding stage, in
such a way that a bottleneck is generated in the
middle layer (see Figure 1). Usually, the learn-
ing strategy involves minimizing the difference
between the input and the coded-decode output.
This learning procedure could be used fo non-
linear dimensionality reduction [24] or nonlinear
PCA [25][26].

In this work, we explore the use of sparse
autoencoders with spectral inputs for efficiently
learning timbre representation and synthesis, in
a similar fashion to [18]. In contrast to this work,
we perform a complete unsupervised learning
with one musical or audio fragment at a time.
This generates a network that overfits the audio

16th Brazilian Symposium on Computer Music SBCM 2017

São Paulo – Brazil 93



fragment used, and focus on nonlinear dimen-
sionality reduction. In addition, a sparse penalty
is included in the cost function in order to favor
a sparser representation in the code layer. When
using the system for sound synthesis, the spectral
representation of the input needs to be invertible
and bear an appropriate method for phase recon-
struction [27].

In the next section, we describe the autoen-
coder structure and the learning methods. In the
results section, we compare timbre spaces gen-
erated with the autoencoder code layer to those
generated with MFCC and Spectral Contrast as
descriptors.

2. Methods

The log-magnitude power spectrogram of a
monaural audio fragment was used as input, after
resampling it to a lower sampling rate (in order
to make the computations lighter) and comput-
ing the short-time Fourier transform (STFT) with
fixed window and step length. Every STFT win-
dow was considered as a data sample (number of
observations), thus the number of frequency bins
was equal to the number of input neurons (num-
ber of features).

The autoencoder was built with tied weights
in the coding and decoding stages. The numbers
of layers and neurons per layer were explored
manually before adopting a simplified structure
in which the number of neurons of each layer
was reduced by a factor of two until a minimum
number is obtained in the code layer, and for
the decoding stage, the numbers are increased by
the same factor. This architecture allowed a rea-
sonable learning performance. In concrete, the
number of neurons per layer finally adopted was
2k k = 10, 9, 7, 5, 3, 5, 7, 9, 10, hence the code
layer has only 8 neurons.

Several activation functions were tested. The
results shown here were obtained using a soft-
plus function and min max normalization. Simi-
lar results were obtained with tanh function and
z-score normalization.

The cost function consisted of three terms:

Figure 1: Autoencoder layout. Xn rep-
resents the activities on the
coding stage Z represents the
code layer activity, and Yn

the activities on the decoding
stage. A clear bottleneck is vi-
sualized.

E =
1

2N0

N0∑

n=1

(Xn − Yn)2

− α

Nz

Nz∑

n=1

Ẑn log(Ẑn

2
)

+λ
1

2K

K∑

k=1

(
‖Wk‖22 + ‖bk‖22

)
(1)

The first term corresponds to the averaged
squared difference between the input X and the
output Y of the autoencoder. N0 denotes the size
of input and output layers. The second term cor-
responds to a sparse regularization component,
provided by the entropy of the normalized activ-
ity of the code layer

∑
(Ẑ) = 1. Nz stands for the

code layer size. Finally, the third term includes
a L2 regularization on the weights and bias. K
corresponds to the number of weight matrices.

Before training the complete autoencoder, a
pretraining [24] stage was performed on single
hidden layer autoencoders, where the input of
a single layer of the autoencoder was the code
layer activity of the previous one. The network
was optimized with Adam method [28].

After the training, the analysis consisted on
inspecting the activity of the code layer. This ac-
tivity plus the weights and bias contain all the
information for reconstructing the original audio
signal. In a general sense, this neuronal activity
can be put into correspondence to a timbre score

SBCM 2017 16th Brazilian Symposium on Computer Music

94 São Paulo – Brazil



Parameters Values
Sampling frequency 22050
Window size 1024 (46 ms)
Step size 256 (11 ms)
Number of spectrum samples 5168
Layers dimensions 2k

k = 10, 9, 7, 5
3, 5, 7, 9, 10

Activation function softplus
α 0.8
λ 0.005
Learning rate 0.005
Batch size 200

Table 1: Hyper-parameters of the
sparse autoencoder

of the musical fragment used as input, or a tra-
jectory on the timbre space of the audio signal.

For visualization of the timbre space, reduc-
tion of the dimensionality of the activations of
the code layer was done by principal components
analysis (PCA). Finally, for the sonification of
the reconstructed spectrogram, we used the orig-
inal phase information. This was done with the
aim of preserving the audio quality, but phase re-
construction algorithms could be used as well.

3. Results
The results displayed here are obtained using

the first 7 cycles of Grisey’s Partiels [29] as in-
put. We have chosen this example because, in
one hand, this piece has an outstanding historic
relevance in the development of timbre in 20th-
century music, and on the other hand, it behaves
as a good data set, mainly due to the fact that
is basically composed by repetitions of similar
sounds with variations.

The hyper-parameters of the autoencoder used
for this results are shown in table 1.

In figure 2, we show the spectrogram of the
original audio signal along with the reconstruc-
tion obtained as output. Despite being a highly
detailed reconstruction, the output displays fewer
variations than the original, due to the fact that
the autoencoder has some denoising properties.

In figure 3 we display the neural activity pat-

Figure 2: Top: Input data spectrogram
of a fragment of Grisey’s Par-
tiels. Bottom: the recon-
structed spectrogram by the
autoencoder.

Figure 3: Code layer activities. As the
reconstruction is almost iden-
tical to the original sound, we
could interpret this activities
as the music neural score.

tern of the code layer. The sparse regularization
cost forces a sparse activity pattern, and some
neurons ended with null activation. Nonethe-
less, different runs of the optimization could end
with different activation patterns (and same over-
all cost), due to random initial weights and bias.

Figure 4, shows on the top row, the tim-
bre space generated by three principal compo-
nents of standard timbre descriptors (in this case
a combination of 20 MFCC and 7 Spectral Con-
trast coefficients). The color shades were ob-
tained by k-means clustering on those descrip-
tors. Seven clusters were used to guide the visual
inspection of both timbre spaces and to match
the different regions. In the middle row are the

16th Brazilian Symposium on Computer Music SBCM 2017

São Paulo – Brazil 95



Figure 4: Top and middle: Timbre space
generated by the first three
principal components of a set
of standard timbre descrip-
tors (MFCC, Spectral Con-
trast) and by the code layer
activities. Bottom: Same data
as in the middle plot, but
with different clustering col-
ors (see text for a full descrip-
tion).

PCA components for the code layer activity pat-
tern with the same color clustering. The bot-
tom row uses its own clusters instead. It could
be observed that some clusters remain close in
both top and middle row timbre spaces, but there
are differences with those clusters generated by
the code layer in the bottom plot, more struc-
ture arise. This is reflected also in the differ-
ence between the third PCA component from the
timbre features and the third component of the
code layer. The standard timbre descriptors elicit
a more compacted space than from the autoen-
coder which has a torn structure.

In the first 7 cycles of Partiels, an alternating
pattern is produced between the trombone and
contrabass low notes and the strings and woods

high notes that generate a cyclic trajectory in
the timbre space which is present in both timbre
spaces (timbre features and code layer).

4. Conclusions

We presented a computational timbre analysis
method involving a sparse autoencoder. When
using this type of neural networks, the code layer
is able to learn a meaningful representation that
is capable of reconstructing the original input
data, the sound spectrum in the present work.
The activity of the code layer is used for timbre
analysis and it behaves like an audio specific, a
small set of sound descriptors.

The results presented here focused on learn-
ing from a single sound or music fragment, but
the same approach could be expanded to learn-
ing from a corpus of music fragments. Different
network architectures may be necessary and also
a different learning paradigm like classification
[18].

Regarding the synthesis capabilities of the
system, when trained with a music fragment,
we consider the code layer activities as a neu-
ral score that interprets the music. This could be
useful for timbre-oriented audio processing and
source separation.

Generated timbre spaces by the autoencoder
shown more structure than those generated by
standard timbre descriptors. For a complete anal-
ysis of the timbre space, a perceptual measure-
ment or an exhaustive listening task is needed
by comparing the clusters and their relative lo-
cations.

5. References

References

[1] Stephen McAdams. Musical timbre percep-
tion. The psychology of music, pages 35–
67, 2013.

[2] Carol L Krumhansl. Why is musical timbre
so hard to understand ? In Structure and
perception of electroacoustic sound and
music, volume 9, pages 43–53. 1989.

SBCM 2017 16th Brazilian Symposium on Computer Music

96 São Paulo – Brazil



[3] Kailash Patil, Daniel Pressnitzer, Shihab
Shamma, and Mounya Elhilali. Music in
our ears: the biological bases of musi-
cal timbre perception. PLoS Comput Biol,
8(11):e1002759, 2012.

[4] Beth Logan. Mel Frequency Cepstral Co-
efficients for Music Modeling. Interna-
tional Symposium on Music Information
Retrieval, 28:11p., 2000.

[5] Dan-Ning Jiang, Lie Lu, Hong-Jiang
Zhang, Jian-Hua Tao, and Lian-Hong Cai.
Music type classification by spectral con-
trast feature. In Multimedia and Expo,
2002. ICME’02. Proceedings. 2002 IEEE
International Conference on, volume 1,
pages 113–116. IEEE, 2002.

[6] John M. Grey. Multidimensional percep-
tual scaling of musical timbres. The Jour-
nal of the Acoustical Society of America,
61(5):1270–1277, 1977.

[7] John Ashley Burgoyne and Stephen
McAdams. Non-linear scaling techniques
for uncovering the perceptual dimensions
of timbre. In ICMC, 2007.

[8] MA Loureiro, HB de Paula, and HC Yehia.
Timbre Classification Of A Single Musical
Instrument. ISMIR, 2004.

[9] Yoonchang Han, Jaehun Kim, Kyogu Lee,
Yoonchang Han, Jaehun Kim, and Kyogu
Lee. Deep convolutional neural networks
for predominant instrument recognition in
polyphonic music. IEEE/ACM Transac-
tions on Audio, Speech and Language Pro-
cessing (TASLP), 25(1):208–221, 2017.

[10] Philippe Hamel, Sean Wood, and Dou-
glas Eck. Automatic Identification of In-
strument Classes in Polyphonic and Poly-
Instrument Audio. Ismir, pages 399–404,
2009.

[11] Jordi Pons, Olga Slizovskaia, Rong Gong,
Emilia Gómez, and Xavier Serra. Timbre
Analysis of Music Audio Signals with Con-
volutional Neural Networks. 2017.

[12] Philippe Hamel and Douglas Eck. Learn-
ing Features from Music Audio with Deep
Belief Networks. International Society
for Music Information Retrieval Confer-
ence (ISMIR), (Ismir):339–344, 2010.

[13] Honglak Lee, Pt Pham, Y Largman, and
Ay Ng. Unsupervised feature learning

for audio classification using convolutional
deep belief networks. Nips, pages 1–9,
2009.

[14] Eric J Humphrey, Aron P Glennon, and
Juan Pablo Bello. Non-linear semantic
embedding for organizing large instrument
sample libraries. In Machine Learning
and Applications and Workshops (ICMLA),
2011 10th International Conference on,
volume 2, pages 142–147. IEEE, 2011.

[15] John Thickstun, Zaid Harchaoui, and Sham
Kakade. Learning Features of Music from
Scratch. pages 1–14, 2016.

[16] Soroush Mehri, Kundan Kumar, Ishaan
Gulrajani, Rithesh Kumar, Shubham Jain,
Jose Sotelo, Aaron Courville, and Yoshua
Bengio. SampleRNN: An Uncondi-
tional End-to-End Neural Audio Genera-
tion Model. pages 1–11, 2016.

[17] Jesse Engel, Cinjon Resnick, Adam
Roberts, Sander Dieleman, Douglas
Eck, Karen Simonyan, and Mohammad
Norouzi. Neural Audio Synthesis of Mu-
sical Notes with WaveNet Autoencoders.
2017.

[18] Andy M Sarroff and Michael Casey. Mu-
sical Audio Synthesis Using Autoencod-
ing Neural Nets. Proceedings of the In-
ternational Computer Music Conference,
1(September):14–20, 2014.

[19] Shinji Takaki and Junichi Yamagishi. A
deep auto-encoder based low-dimensional
feature extraction from fft spectral en-
velopes for statistical parametric speech
synthesis. In Acoustics, Speech and Sig-
nal Processing (ICASSP), 2016 IEEE Inter-
national Conference on, pages 5535–5539.
IEEE, 2016.

[20] Spyridon Stasis, Ryan Stables, and Jason
Hockman. A Model for Adaptive Reduced-
Dimensionality Equalisation. Proc. of the
18th Int. Conference on Digital Audio Ef-
fects (DAFx-15), pages 1–6, 2015.

[21] Takaaki Ishii, Hiroki Komiyama, Takahiro
Shinozaki, Yasuo Horiuchi, and Shingo
Kuroiwa. Reverberant speech recognition
based on denoising autoencoder. In Inter-
speech, pages 3512–3516, 2013.

[22] Emmanouil Benetos, Margarita Kotti, and
Constantine Kotropoulos. Musical in-

16th Brazilian Symposium on Computer Music SBCM 2017

São Paulo – Brazil 97



strument classification using non-negative
matrix factorization algorithms and subset
feature selection. In Acoustics, Speech
and Signal Processing, 2006. ICASSP
2006 Proceedings. 2006 IEEE Interna-
tional Conference on, volume 5, pages V–
V. IEEE, 2006.

[23] Pablo Sprechmann, AM Bronstein, and
Guillermo Sapiro. Supervised non-negative
matrix factorization for audio source sep-
aration. Vista.Eng.Tau.Ac.Il, pages 1–14,
2014.

[24] G. E. Hinton. Reducing the Dimensional-
ity of Data with Neural Networks. Science,
313(5786):504–507, 2006.

[25] Matthias Scholz, Martin Fraunholz, and
Joachim Selbig. Nonlinear principal com-
ponent analysis: neural network models
and applications. Principal manifolds for
data visualization and Dimension Reduc-
tion, pages 45–68, 2008.

[26] Pascal Vincent PASCALVINCENT and
Hugo Larochelle LAROCHEH. Stacked
Denoising Autoencoders: Learning Useful
Representations in a Deep Network with a
Local Denoising Criterion Pierre-Antoine
Manzagol. Journal of Machine Learning
Research, 11:3371–3408, 2010.

[27] Daniel Griffin and Jae Lim. Signal estima-
tion from modified short-time fourier trans-
form. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 32(2):236–
243, 1984.

[28] Diederik P. Kingma and Jimmy Ba. Adam:
A Method for Stochastic Optimization.
pages 1–15, 2014.

[29] Gérard Grisey. Partiels [: pour 18 musi-
ciens: partitura. Ricordi, 1976.

SBCM 2017 16th Brazilian Symposium on Computer Music

98 São Paulo – Brazil


