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Abstract. In this paper we report on preliminary experiments in the study of
microtiming features in Samba music. Focusing on polyphonic audio music with
almost constant tempo, we propose an algorithm to discover from data in a
bottom-up manner systematic timing deviations at the 16th-note level in quarter-
note-long temporal patterns.
Our analysis of the data highlights a systematic shift of third and fourth 16th-
note beats, slightly ahead of their corresponding quantized positions.

1. Introduction

Music styles can often be characterized by specific repeating rhythmic patterns. There are
two important aspects to such patterns. First, the relativetime instants of musical notes
as measured on a discrete, quantized time grid (specified by integer multiples or divisions
of a basic pulse). This is how a pattern would be noted on a score. And second, the small
and yet systematic timing deviations between instants where notes are actually played
and their corresponding quantized positions. In some cases, these deviations can be rep-
resented as series of tempo changes, while in other cases they are better represented as
event shiftsat aconstant tempo[Desain and Honing, 1991, Bilmes, 1993]. In this paper,
we focus on the latter type of deviations, which we will referto as “microtiming.”

Such deviations occur in many different musical styles and depend on the posi-
tion in the metrical structure. For instance, Jazz is characterized by a particular pattern
of deviations: the “swing,” where “consecutive eighth-notes are performed as long-short
patterns” [Friberg and Sundström, 2002]. Traditional Irish fiddle music also shows com-
parable timing deviations at the eighth-note level [Rosinach and Traube, 2006]. One char-
acteristic of Viennese Waltz is also a certain amount of swing, but this time at the quarter-
note level (each third quarter-note in a bar is shorter). In this paper, we are interested
in a particular type of Samba music (see Section 2), and focuson systematic deviations
at the 16th-note level. That is, we consider quarter-note-long patterns and seek whether
systematic timing deviations occur around each of the four 16th-note beats.

There is a number of computational approaches to the study ofperformers’ timing
expressiveness [Widmer, 2002]. The work of [Bilmes, 1993] is of special interest here.
He analyzes percussion-based audio data,1 introduces the notion of “tatum” (fastest met-
rical pulse) and focuses on deviations with respect to this level of the metrical hierarchy.
He proposes a semi-automatic2 transcription system relying on onset detection and stroke
classification, then, the metrical position of each stroke is determined and timing devia-
tions are computed. Similar phrases are then clustered and systematic deviations can be

1with a separate audio track for each instrument
2i.e. with complete knowledge of the metrical structure
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induced via machine learning algorithms. The learned microtiming deviations can then be
applied to quantized phrases in order to generate expressive musical phrases. Synthesis is
done via the triggering of isolated percussion samples.

[Wright and Berdahl, 2006] propose a system for percussion-based MIDI data.
Their system learns deviations from quantized positions for 9 different Brazilian rhythms
(none of them being Samba de Roda) via diverse machine learning algorithms and then
apply these learned patterns to quantized data, with satisfactory results.

Finally, some authors proposes algorithms for determiningthe swing of audio
signals, e.g. [Laroche, 2001]. Additionally, the swing of such signals can be modified by
time-scaling techniques [Gouyon et al., 2003, Janer et al.,2006].

The paper is structured as follows. First we provide detailsof the data used for ex-
periments. We then propose an algorithm to highlight patterns of microtiming deviations
in quarter-note-long segments. We then discuss some findings and propose lines of future
work.

2. Data

For these preliminary experiments, we collected a relatively small number of audio ex-
cerpts, namely 49, of length ranging between around 10 to 30 s. Audio data were ripped
from commercial CDs to 44.1 kHz mono. These excerpts are representative of traditional
Samba music in the particular style of Rio de Janeiro’s “Samba de Roda,” with acoustic
guitar, four-stringed small Brazilian guitar (i.e. “cavaquinho”), and a percussion section
(tambourine —i.e. “pandeiro”—, friction drums, etc.), following a characteristic duple
rhythm with second and fourth beats in a bar often marked by a low-frequency percussion
sound. In this style of music, it is very common that the tambourine and “cavaquinho”
follow a rhythmic pattern at the 16th-note level. Artists and bands are Teresa Cristina &
Grupo Semente (albums “A vida me fez assim”, “A música de Paulinho da Viola” vol. 1
& 2 and “O mundo é o meu lugar”), Renascença Clube (album “Samba do trabalhador”),
Velha guarda da Portela (album “Tudo azul”), Grupo Fundo do Quintal (album “Seja sam-
bista também”), Elton Medeiros, Nelson Sargento and Galo Preto (album “Só Cartola”)
and Paulinho da Viola and Elton Medeiros (album “Samba na madrugada”).

There are between 15 to 73 beats per excerpt (e.g. around 5 to 18 bars per excerpt),
reaching a total number of 1803 beats.

3. Algorithm

In order to discoversystematicpatterns of deviations with respect to quantized po-
sitions, we make use of an algorithm to compute rhythmic patterns inspired from
[Dixon et al., 2004]. Among other differences, detailed below, we focus on patterns at
a different level of the metrical hierarchy (quarter-notesinstead of bars), use a different
beat tracking algorithm and use a different signal representation (complex spectral differ-
ence instead of amplitude envelope).

3.1. Beat tracking

Studying timing patterns in quarter-note segments requires knowledge of individual beats
at this level. We segmented the data with the use of the semi-automatic software de-
scribed in [Gouyon et al., 2004]. When necessary, we manually oriented tracking towards
quarter-note level.
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3.2. Rhythmic patterns

3.2.1. Onset detection function

Audio data is processed into a representation of lower dimensionality highlighting note
onsets. Instead of using the signal amplitude envelope, as in [Dixon et al., 2004], we
chose to use one of the onset detection functions proposed in[Bello et al., 2004]: the
“complex spectral difference” (the spectral difference between consecutive signal frames
computed in the complex domain, i.e., accounting for magnitude and phase). Frames
are 23.2 ms-long and hop size is set to 11.6 ms. The resulting sampling frequency is
44100/512 = 86.1 Hz. See an example in Figure 1.

0 100 200 300 400 500 600 700 800
Time (samples)

quarter−note beats
spectral complex difference

Figure 1: Example of complex spectral difference, and quart er-note beats (be-
ginning of the excerpt “Tive Sim” from the album “S ó Cartola” by Elton
Medeiros, Nelson Sargento and Galo Preto).

3.2.2. Beat recentering

Beat positions are then slightly corrected (automatically) so that they would correspond
precisely to note onsets. For this, we use a tolerance windowof 50 ms around beats and
reset beats to the closest maximal onset in this window.3

3.2.3. Resampling and normalization

As written above, in the data we use, tempi are roughly constant. However, some slight
differences can appear in Inter-Beat Intervals (IBIs). In order to be able to accurately
compare patterns in quarter-note segments of slightly different lengths, we must resample
data in each segment so that they would all have the exact samelength. We chose to
resample to 40 points per quarter-note segment, using a polyphase implementation.

Segment amplitudes are then normalized to unity.

3The length of the tolerance window is not critical.
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3.2.4. Extraction of typical quarter-note segment patterns

One way of computing the typical quarter-note pattern is to compute the average, for each
point in the segments, over all1803−49 = 1754 segments. Figure 2 shows an illustration
of this average pattern together with some individual patterns (randomly selected).

first 16th−note second  16th−note third  16th−note fourth  16th−note quarter−note
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Figure 2: 27 randomly selected patterns, and average patter n (thick line).

However, we can expect some patterns to be outliers (as e.g. those corresponding
to quarter-note segments in an excerpt’s introduction, or fill-ins). We therefore remove
outliers by clustering patterns with ak-means algorithm, as in [Dixon et al., 2004].4 Fig-
ure 3 illustrates three of the typical patterns in our data, obtained byk-means clustering.
They account for 35%, 31% and 34% of the patterns, respectively.
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Figure 3: Three patterns obtained via k-means clustering (with k = 3).

4with k = 3, we used Weka for this, seehttp://www.cs.waikato.ac.nz/ml/weka and
[Witten and Frank, 2000].
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4. Discussions
We can see in Figures 2 and 3 that most of the patterns show local maxima around each of
the four 16th-note beats in a quarter-note. This corresponds to the fact that in Samba, there
is usually an explicit metrical grid at the 16th-note level,mostly set by the tambourine and
other percussive instruments, or harmonic-percussive instruments, as the “cavaquinho.”

We can also see in Figure 3 that there are three typical patterns in our data: one
with accents (by “accent,” we mean local maxima in the onset detection function) on all
16th-notes (cluster 1, where the onset detection function has similar amplitudes around
all 16th-notes), one with accents on the first and third 16th-notes (cluster 2), and one with
accents on the first, second and fourth 16th-notes (i.e. cluster 3).

We can retrieve representative instances of these clustersby correlating clusters
with all quarter-note segments in the data. For instance, the waveform and spectrogram5

of the most representative instance of cluster 3 (with accents mostly on the first, second
and fourth 16th-note, this is especially clear on the waveform) is shown in Figure 4.

4.1. Systematic deviations

More interestingly, we can also see, in the average pattern,and even more so in the typical
patterns obtained byk-means clustering, that both the third and fourth 16th-notebeats
are slightlyaheadof their corresponding quantized positions. Notes seem to be played
typically (on average) slightly before their quantized positions, with an advance of around
1/40 of the IBI. This corresponds to almost 20 ms at a tempo of 90 BPM (typical for this
kind of music).

We can see in Figure 4 and example of such a pattern, where the third and fourth
16th-notes are played almost 30 ms ahead of their quantized positions.

Figure 4: Illustration, from bottom to top, of the audio wave form, spectrogram
and metrical structure at the 16th-note and quarter-note le vels for one
of the 1754 quarter-note-long patterns in our data (i.e. one of the pat-
terns in the excerpt “Alvorada” from the album “S ó Cartola” by Elton
Medeiros, Nelson Sargento and Galo Preto). This pattern is t ypical of
the strong-strong-weak-strongform found in our data (i.e. cluster 3). Note
also the timing shift of the third and fourth 16th-notes, sli ghtly ahead of
their corresponding quantized positions.

5. Future work
The work reported here should be continued and cross-validated by further experiments
with a larger dataset. A complementary avenue for future work would be to purchase

5frequencies are represented on a linear scale from 0 to 22050Hz
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MIDI-matched audio data in the same music style, this would open the way to a finer pre-
cision in the analysis which would be necessary to capture subtle microtiming differences
in different quarter-note segments, or different measures[Wright and Berdahl, 2006].

It would also be interesting to study the sensitivity of these findings to the num-
ber of clusters. Further experimentations with different machine-learning algorithms,
or different front-ends (e.g. spectral centroid normalized by energy as suggested in
[Paulus and Klapuri, 2002]), could also be of interest. In complement, one could also
explore outliers properties.

In these experiments, we purposely normalized the length ofeach quarter-note
pattern. It would be interesting in further experiments to study a possible dependency of
the found deviations with respect to tempo (as has been demonstrated in the particular
case of swing [Friberg and Sundström, 2002]).

A cross-disciplinary effort could also be done in comparingfindings reported here
to Samba-specific musicological literature, e.g. [Sandroni, 1996].

There are diverse applications to the findings reported here. First, one might think
of taking advantage of these characteristic features for music similarity and music genre
classification [Dixon et al., 2004]. Second, it would also beinteresting to develop a sys-
tem for music transformation where such deviations could beexplored (either augmented
or subtracted). This would permit to study their perceptualrelevance. This would also
open the way to change the expressiveness of quantized data,and make it sound “more hu-
man” [Bilmes, 1993, Gouyon et al., 2003, Janer et al., 2006, Wright and Berdahl, 2006,
Widmer, 2002, Ramirez and Hazan, 2006]. Finally, further studies could be dedicated to
the relation between microtiming deviations and perception of “Groove” in Samba, as
well as in other music styles.
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