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Abstract. We present here a new-fashioned audio processor directed to perform
harmonic distribution manipulation. It’s a tool that operates over timbre, being
sensitive to pitch context. The process is based on a wavelet-based filter-bank
that is dynamically tuned to the note’s fundamental pitch. As a single entry pro-
cess it acts as harmonic equalizer while with two entries it works as harmonic
controller.

1. INTRODUCTION

Helmholtz [Helmholtz, 1863] on his classic ”On the Sensations of Tone as a Physiolog-
ical Basis for the Theory of Music” defined tone as a combination of a fundamental and
countless overtones. Followed by other studies, its consensus that harmonic distribuiton
has a primary role over timbre perception of musical sounds. Thus, on music sounds,
variations on partials implies on variations over timbre.

We present here a processor focused on the timbre manipulation of musi-
cal interesting sounds by means of partials equalization. It’s based on dynamic
wavelet filter bank proposed in [Beltran and Beltran, 2003] controlled by a pitch de-
tection algorithm. A preview version limited to this application has been presented in
[Luvizotto and Costa, 2007].

The processor can also work as a harmonic controller of inharmonic sounds when
using a harmonic material to control pitch detection and applying the filter bank over
another sound. In this sense it actually would analog to an automatic and dynamic sub-
tractive synthesizer.

The Wavelets transform is a method that combines decomposition in elementary
contributions and hearing like properties [Kroland-Martinet, 1988]. Its main feature for
our application is the possibility of fast filter design with few parameters. Also, we con-
sider the pitch detection which can be a very complex task due large bandwidth and in-
harmonic partials [Jehan, 1997].

The paper is outlined as follow: in the first section we treat the main aspects about
wavelets analysis and the mathematical background, including the formulation of the used
scale and shift parameters as well as the chosen mother wavelet. In the following section
we handle the pitch detection algorithm with an overview of the Harmonic Product Spec-
trum method. In the last two sections there will be an explanation of the implementation
and also a discussion about the results and performance of our model.
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2. WAVELET ANALYSIS AND FILTER BANK
Usually the process of partial extraction is based on Short Time Fourier Transform, but as
we know by the Heisenberg uncertainty principle an ideal time localization gives rise to a
non-ideal frequency localization and vice versa[Chui, 1997][Mallat, 1998].

Wavelet Analysis can be seen as a powerful tool to fix this problem that provides
a flexible time-frequency window and that is the main reason to choose wavelets to im-
plement the filter-bank. In formulating a Continuous Wavelet Transform (CWT) a scale
parameter is introduced to adjust the width of the sliding time window process. The math-
ematical basis of the Fourier Transform are sine waves whereas the basis of the CWT is a
wavelet family generated by the mother wavelet ψ(t).

As proposed by Beltrán in [Beltran and Beltran, 2003] we are considering a com-
plex generalization of the Morlet wavelet given by:
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for the mother wavelet.

This function as proposed by Kronland-Martinet et al [Kroland-Martinet, 1988]
requires small corrections to ensure that the admissibility condition for an ana-
lyzing wavelet is satisfied. However, in practice taking w0 > 5 is enough
[Beltran and Beltran, 2003]. In this case the Fourier transform of the Complex Morlet’s
wavelet is:

ψ̂(ω) = Ce
−(ω−ω0)2

2 (2)

C’ e C are normalization constants in the time and frequency domain, respectively.

As we are interested on a filter bank we need to have how to control the frequency
resolution of each band. This way we can tune all the bands of our processor to the
sound’s partials of a given note. We should included a parameter k in the equation 2 to
control the bandwidth of the filter. So we have in the frequency domain:

ψ̂(ω) = Ce
−(ω−ω0)2

2k (3)

The set of scale is employed to provide a logarithm-resolution on the frequency axis. We
will also insert, in equation 3, a discrete factor si to slide the central frequency of the
first band, i.e, changing this factor we will be sliding the first band and generating all the
others. To prevent aliasing problems the filter bank generates first the bands with highest
frequencies. That is, it gets the fundamental pitch ff of the played note, calculates the
last frequency band that will be used and then calculates the central frequencies ωc of the
remaining bands changing si as follow:

ωc1 = ffN (4)

and
ω0 = sminωc1 (5)

We will call s1 of smin cause it can be considered a tuning factor related to the
Nyquist criterion which fine tunes ω0 to the desire first (highest) band’s central frequency
ωc1 .

And for 2 ≤ i ≤ N we have:

si =
N

np

(6)

146



Figure 1: Filter bank generated by the mother wavelet presented in equation 9
with ωc = 100Hz, k = 22000 and smin = 6.91 and si given by equations 6.

ωc =
ω0

si

(7)

N is the number of bands and np is the band’s number of the i-th frequency that is
being calculated. We can see in the equation 7 the relation between the central frequency
ωc and the frequency ω0 for all bands. Then we have in the frequency domain the follow
equation:

ψ̂(ω) = Cse
−(siω−ω0)2

2k (8)

where Cs is also a normalization constant. We have in equation 8 the main expression for
the filter bank in the frequency domain. We need now to find its time representation to be
able to use the convolution representation to filter the input signal. The follow expression
was obtained from the equation 1, taking into account properties of Fourier transforms
and by changing the continuous factor a for the discrete one s:

ψ(t, s) =
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The equation 9 presents the mother wavelet that will be used with the frequency slide
parameter s and bandwidth parameter k.

Now we’ll expose the pitch detector algorithm.

3. PITCH DETECTION
Pitch detection algorithms can be classified in two separate categories, time-domain based
on period detection and spectral-domain. The first kind of detection seems to be the
most straightforward idea, which consists in looking to the input signal as an amplitude
fluctuations in the time domain and try to find repeating patterns from the waveform that
could lead us to its periodicity. However due to its limitations we will use in this paper the
second category of pitch detection algorithms. The chosen method is Harmonic Product
Spectrum, or HPS.

If the input signal is a note, with a well defined pitch, then its spectrum should con-
sist of a series of peaks, corresponding to harmonic components that are integer multiples
of the fundamental frequency. The HPS algorithm measures the maximum coincidence
for these harmonics [de la Cuadra et al., 2001].

If we compress the spectrum a number of times (downsampling), and compare it
with the original spectrum, we can see that the strongest harmonic peaks line up. The first
peak in the original spectrum coincides with the second peak in the spectrum compressed
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Figure 2: Overview of the HPS algorithm.

by a factor of two, which coincides with the third peak in the spectrum compressed by
a factor of three. Hence, when the various spectrums are multiplied together, the result
will form clear peak at the fundamental frequency. An comprehensive overview of this
method can be found in [Galembo and Askenfelt, 1994]. Figure 2 demonstrates the HPS
algorithm graphically.

4. IMPLEMENTATION

The algorithm was implemented with Matlab according to the diagram of the figure 3:

The input signal first reaches the pitch detector (that we call by Dr. Pitch) which
outputs the fundamental frequency’s value ff to the filtering stage. Then the filter param-
eters ω0 and si are calculated and inserted into the equation 9. As we know each band of
the filter is related to a wavelet with bandwidth factor k and central frequency ωc which
is sampled with a sampling frequency fs. As a results we have a matrix Mm×n where m
is the number of sampled points and n the number of filter bands N .

In practice M is left-side multiplied by a weight’s matrix P1×n that has the infor-
mations about the gain of each band, i.e, values between 0 and 1 came from the processor’
slides. At last this resulted matrix is time convoluted with the input sound vector provid-
ing the filtered output. When the next signal comes Dr. Pitch sends the new ff to the filter
stage. The parameters are actualized to generate the up-to-date wavelets and go on like
before.

We used a Hanning window with 1024 and also 2048 samples with overlap of
50%. The window size depends on the lowest frequency (large period) of the input signal.
We are looking for other methods of pitch detection that could be more efficient and
computationally better.

148



Figure 3: Implementation Block Diagram

Figure 4: Sonogram of the input signal.

5. RESULTS

We applied the proposed processor with ten and twelve bands to many different
sounds. Guitar, bass, percussion instruments, some different guitar tunings, for ex-
ample, with the 6th string tuned to C1 since we were interested in evaluate how
Dr. Pitch would work at extreme conditions. These examples can be find at
www.nics.unicamp.br/∼andre/processor.

We can see on the figure 4 that Dr. Pitch worked very well, tracking both of notes
correctly. We can also observe the difference between the spectrograms of figures 4 and 5
considering the number of partials presented. Only the first five partials were letting pass
in figure 5 while all others five were filtered.

Figure 5: Sonogram of the output signal.
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Figure 6: Original sawtooth wave.

Figure 7: Filtered sawtooth wave. Notice that it is closed to a square waveform.

As a second example we have a sawtooth wave on figure 6 where its first four even
harmonics were filtered. We can see on figure 7 that the resulted waveform is closed to
a square wave, as expected. The more we increase the number of the filtered partials the
more waveform matches to the square waveform.

Finally a square wave, figure 8, were filtered letting pass just the fundamental
frequency. As we can observe on figure 9 the resulted waveform is closed to a simple
sine.

6. CONCLUSION AND FURTHER IMPLEMENTATIONS
We presented the first results of a new-fashioned sound processor. A method of partials
extraction was proposed as well as a pitch detector based on the autocorrelation function.
The essential mathematical tools was revised in the first sections and a briefly discussion
of the pitch detection in the section three.

This first prototype made with Matlab could give us a good idea of the sonic

Figure 8: Original square wave.
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Figure 9: Filtered square wave. Notice that it is closed to a simple sine.

potential of the model. The best results were obtained in low frequencies sounds for
example with bass drums, bass and lower guitar sounds.

We are currently developing a low latency C++ implementation to be used as
a cross-platform plugin. We are also verifying the possibilities of working with other
pitch detection methods, for example a wavelet based algorithm, and use it as another
parameter on the graphical interface that could be selected by the user depending which
kind of sound it wants to filter for example bass, brass, clarinet, piano etc.
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