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Abstract. This paper presents a new mechanism for automatic speech/music 
discrimination (SMD). Such feature is based on the concept of multiple 
fundamental frequencies. The performance of the feature in terms of correct 
classifications is evaluated for a wide variety of audio signals, and factors such 
as computational complexity and robustness are also investigated. The results 
are compared to those ones reached by previous techniques. 

1. Introduction 
In the last decade, the demand for techniques able to automatically discriminate 
between music and speech signals has risen dramatically. There are several technologies 
that can benefit from the advances achieved in this area, as Automatic Speech 
Recognizers and Automatic Music Transcriptors, which must be fed with the 
appropriate signals. Other applications for speech/music discrimination techniques are 
the hearing devices and the automatic selection of FM radio stations. 

 The first researches in SMD have reached about 95% of accuracy in their 
experiments [Saunders 1996], [Scheirer and Slaney 1997]. Several works have followed 
those early proposals [Carey et al. 1999], [Cho et al. 2003], [El-Maleh et al. 2000], [Jarina 
et al. 2002], [Lu et al. 2002], most of them presenting accuracy between 92% and 98%. 

 There are two characteristics that are common to all speech/music 
discriminators: 1) the great number of features extracted from the signals and 2) the use 
of techniques such as Gaussian Mixture Models (GMM), Hidden Markov Models 
(HMM) and k-Nearest Neighbors (KNN) to combine such features. These approaches 
have a number of drawbacks associated: high computational and programming 
complexity and a large number of degrees of freedom, reducing the robustness of the 
approach. The technique presented here overcomes most of such limitations, since it is 
extremely simple to implement, requires little computational resources and is composed 
of only one feature, meaning that it is very robust to a wide range of situations. 

2. Feature Extraction 
Before the feature extraction itself, the signal must be properly formatted to fit the 
process requirements. The first step is to identify if the signal is monophonic or has 
more than one channel. In the first case, no action is taken; otherwise, the channels must 
be combined using a simple arithmetic average. In this work, the signals are sampled at 
48 kHz and divided into frames of 1,024 samples, corresponding to time intervals of 
21.3 ms. The frames are 50% superposed and are weighted by a Hanning window. 

 The strategy presented here is based on the signal main fundamental frequencies 



  

(f0) detection. Since the signals analyzed here have several sound sources, some kind of 
processing is necessary to ease the detection of the f0 of each sound source. Most of the 
techniques described in the following were inspired in the multipitch analysis model 
presented in [Tolonen and Karjalainen 2000]. The strategy is illustrated in Figure 1. 
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Figure 1. Strategy to estimate multiple fundamental frequencies. 
 

 In Figure 1, the input consists of the signal frames, and is divided into two bands 
(low and high frequencies) by a filtering process with cut-off at 1 kHz. The low frequency 
portion is also submitted to an extra filtering to block frequencies below 70 Hz. The high 
frequency portion is then submitted to a half-wave rectification. After that, it is lowpass 
filtered with a filter similar to that used to determine the low frequency portion. 

 The periodicity detection, which results in x2 in Figure 1, is based on the concept 
of “generalized autocorrelation”, and is given by 

  ( ) ( )( ) ( )( )2 IDFT DFT DFTlow highx n x n x n⎡ ⎤= +⎣ ⎦ , (1) 

where DFT and IDFT represent the Discrete Fourier Transform and its inverse, 
respectively, and n is the time index. 
 The peaks of the autocorrelation given by x2(n) are good indicators of potential 
fundamental frequencies. However, since the signals have multiple sound sources, x2(n) 
can show lots of spurious information that can potentially lead to wrong estimations. To 
reduce the amount of unwanted information, a peak pruning technique is applied. 
Firstly, a half-wave rectification is applied to clip negative values of x2(n). The resulting 
function is expanded in time by a factor-two oversampling and subtracted from the 
clipped autocorrelation function. This procedure eliminates all peaks with twice the 
time lag of a higher amplitude reference peak. The technique also removes near-zero 
values of the autocorrelation function. In the present work, the procedure was applied to 
eliminate peaks with twice and three times the time lag of the reference peaks. 
 The next step is to identify the three main peaks of the enhanced autocorrelation 
function for each frame. Those three peaks are taken as the f0 of the three main sound 
sources of the frame. If less than 3 sources are present, only one or two peaks will be 
identified. The estimated frequencies are then converted to the MIDI scale, according to 
the procedure described in [Tzanetakis and Cook 2002] and given by 

  ( )212 log 440 69m f= + , (2) 

where f is the frequency in Hz and m is the MIDI number. All frequencies with same 
MIDI number are counted over all frames, generating a histogram whose bins are the 
MIDI notes. 



  

 It was observed that most of the analyzed speech signals have frequencies whose 
corresponding MIDI numbers are equal or greater than 100, while music signals rarely 
present such high frequencies. This probably occurs because of short speech segments 
with low energy and high frequency whose period is defined enough to be detected by 
the detection procedure. Next section will describe how this information is explored in 
order to provide a reliable differentiation between speech and music signals. 

3. Tests and Results 
The database used in the tests is composed by 2,587 wav-format audio files sampled at 
48 kHz and quantized with 16 bits, and it is divided into speech and music files. 

 As commented before, it was observed that speech signals often presents higher f0 
than music signals. Therefore, the first task is determining the proportion of high 
frequencies that leads to the best discrimination between speech and music signals. It was 
observed that the following rule led to the best results: given a histogram, if the proportion 
of MIDI values equal or higher than 100 is over 0.1%, the signal is considered speech; 
otherwise, the signal is considered music. Table 1 summarizes the results obtained. 

 

Table 1. Results 
 

Group Right Classification Percentage 
Speech (all files) 94.01% 

Speech (only files without environmental noise) 96.05% 
Music (all files) 93.63% 

Music (without rap files) 94.87% 
 

 As can be seen, the percentage of right classifications lies between 93 and 96%. 
In the case of speech signals, the performance is very good even when strong 
environmental noise (street, office, nature sounds) is present, indicating that the strategy 
is very robust to extreme conditions. In the case of music, it was observed that for some 
musical genres, like classical and rock, the percentage of right classification is near 
100%, while for musical genres that have several elements of actual speech, like rap, 
the correctness can drop to values below 80%. 

 Comparing the proposed procedure with some methods in the literature, one can 
conclude that there are previous techniques presenting slightly better discrimination 
accuracy. The best results were achieved by [Lu et al. 2002], which used a very complex 
strategy to reach a precision of about 98%. However, when the comparison is done taking 
into account not only the discrimination but also the robustness of the discriminator to 
unexpected situations and the computational effort demanded by the method, the 
conclusion is that the strategy here presented is clearly superior. As commented before, 
since this proposal depends only on one feature, it presents a great robustness to 
unexpected situations, as can be observed in Table 2. Additionally, it demands low 
computational effort, indicating that the procedure can be used in real time applications, 
even when the available computational resources are scarce. 

4. Conclusions 
This paper presented a new strategy to discriminate between speech and music signals. 



  

The technique consists of the extraction of a single feature based on the concept of 
multiple fundamental frequencies. 

 The performance of the strategy in terms of correct estimates is competitive with 
previous works. Additionally, it presents a clearly advantage in terms of robustness and 
computational complexity. The characteristics of this technique make it appropriate to 
be used in applications where potentially problematic conditions, like degradations and 
environmental noise, are expected. Finally, it can be used in real-time applications. 

 There are several possible directions for future research. A possible 
enhancement can be achieved with the improvement of the process used to estimate the 
multiple fundamental frequencies. Another interesting line of research is trying to 
combine the strategy here presented with another successful techniques. At last, some 
new features based on the histograms generated in the fundamental frequency 
estimation can be created and combined, in such a way the results are improved without 
adding significant computational effort. Two novel features that have already been 
implemented and that have shown good results are the ratio between the amplitude of 
the histogram peak and the histogram sum, and a measure to the variation between the 
bin amplitudes of consecutive MIDI notes. 
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