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Abstract. This paper presents a new model for measuring similarity in a general
Rhythm Space. Similarity is measured by establishing a comparison between
subsequences of a given rhythm. We introduce the hierarchical subdivision of
rhythm sequences in several levels, and compute a Distance Matrix for each
level using the “block distance”. The information about the similarity of the
rhythmic substructures is retrieved from the matrices and coded into a Similarity
Coefficient Vector (SCV). We also present possibilities for the reduction to single
values of similarity derived from the SCV. In addition, two applications of the
formal model are presented, showing the potential for development using this
approach.

1. Introduction

”To study rhythm is to study all of music. Rhythm both organises, and is itself organised
by, all the elements which create and shape musical processes” and this is how Meyer and
Cooper [Cooper G., 1963] emphasize the importance of rhythm in the overall structure
of music. In the20th century, rhythm in music, has finally been put in the focus of
the attention of composers, such as Igor Stravinsky, Olivier Messiaen, Iannis Xenakis.
Since then, an increasing interest to automatically compare music styles and composing
techniques. Rhythm, as the most fundamental aspect of music plays a decisive role in this
task.

The rhythm organization of music, as well as speech sounds and environmental
events, are highly dependent on the perception of human beings. Even when subjects
are presented with equal pulses at equally spaced intervals, the pulses are perceived as
being grouped in a regular metric structure [Handel, 1989]. It is argued that this implicit
metrical organization improves attention and memorisation of sequential tasks.

Perception influenced a great number of researchers in music [Gabrielsson, 1973,
Povel and Essens, 1985]. Cooper and Meyer [Cooper G., 1963], developed an auditory
theory based onGestalttheories of perception, where rhythm groups in the basic level
are seen as units that are categorised according to the position of the accentuated notes.
Also according to them, one strong cue in rhythm organization is the one of pattern rep-
etition. When a rhythmic motive is repeated, the brain integrates it creating a unit that is
memorised and categorised accordingly.



In our approach we provide a measure of the occurrence of these repetitive patterns
in a stream of rhythmic events. We leave out of this study the implications of accentuation,
melody, harmony, timbre, and articulation to the perception of rhythm, and we do so
for two reasons: Firstly, we are able to extract interesting and meaningful information
solely from the position were the events take place, and secondly, we can find repertoire
for percussion that does not contemplate any of the former musical characteristics apart
from accentuation. We strongly believe, though, that our measure can be extended to
incorporate some of these characteristics. Furthermore, we can have rhythms which do not
obey the marks of bars or any metrical structure. This enables to compare and distinguish
rhythmic sequences with different subdivisions, and possibly to provide some insight on
situations that metric is difficult to extract.

Computers find it simple to discriminate if something is equal or different, but the
problem rises when there is the need to evaluate if something is similar [Minsky, 1988].
The necessity of similarity measures concerns many areas of music research, spe-
cially music information retrieval systems [Hewlett and Selfridge-Field, 2005], automatic
rhythm transcription of human-performed music to MIDI protocol [Takeda et al., 2003],
evaluation of copyright issues, and evolutionary music [Miranda, 2004].

On the side of the abstract models, interesting results were achieved using the
Levenshtein distance, also called edit distance. This a popular method for measuring
similarity between strings of text of arbitrary length. This method counts the number of
insertions, deletions and substitutions necessary to change one string into another other,
being this number the measure of similarity between the sequences. Orpen and Huron
have applied this distance to measure melodic, rhythmic and harmonic similarity in Bach
chorales [Orpen and Huron, 1992]. Mongueau and Sankoff provided a method which
can be seen as an extension of the previous [Mongeau and Sankoff, 1990]. Instead of
considering that each transformation to the sequence contributes with the value of one to
the distance, each transformation contributes with a weighted value sensitive to the kind
of musical differences who are to be measured.

In this work we are most interested in constructing an abstract and formal model
which can be able to compare rhythm patterns in the most general way, capturing informa-
tion in several layers of detail. In addition we intend our model to be able to manipulate
rhythm sequences in order to create new ones, which could be used in music composition.
In the future we will extend this work by comparing it with the existing formal models
and we hope to establish a closer relation between our model and perception by testing
rhythmic similarity with human subjects.

In the next section we formally introduce the concepts of Rhythm Space and Sim-
ilarity Measure. In section 3 we describe our algorithm implementation. In section 4
we present two applications of our model. In the last section we conclude with some
comments about the model and list some interesting topics for further research.

2. Rhythm Space and Similarity Measure
In this work, rhythm sequences are thought as elements (or vectors) of a finite dimension
vector space. Formally we have coded rhythms as sequences of numbers(b1, b2, . . . , br, ),
where the entriesbi can be any number of the setB = {−1, 0, 1, 2, . . . , J} which we
namedBeat Set. A positive number in a sequence indicates first that one have a beat and
its magnitude indicates the level of acentuation, such as strong beat, weak beat, half strong
beat, etc. The number of sequencial0s indicates the duration of the beat. The number−1
indicates pauses or, in MIDI protocol, a note off. We associate the positive numbers to ac-
centuation. For example, takingJ = 3 we get the Beat SetB = {−1, 0, 1, 2, 3}, the accen-



tuation should be read as: 1 means aweak beat, 2 ahalf strongand 3 astrong beat. Then
we can construct rhythm sequences like, for example,(3, 0, 1, 0,−1, 0, 0, 0, 2, 0, 0, 0, 3).
Clearly we can have as many accentuation we wish, just extending the Beat Set. However
we must introduce a prescription in order to avoid some ambiguities.

Rule: If in a rhythm sequence a value -1 occurs, it can only occur again after a positive
number had occurred first.

This rule avoids ambiguities, for example, if we compare the sequences like
a = (1,−1,−1, 0, 0) andb = (1,−1, 0, 0, 0). Since they are different one from another,
the distance (see below) between them is positive. Nevertheless they represent the same
events (in this case, pause) which intuitively suggests the distance must be zero. Our rule
says that only the second sequenceb is a valid one, that is, it is an element of our Rhythm
SpaceR defined below.

Now, given a Beat SetB, we define its associatedn-rhythm vector spaceRn(B)
as the set of alln-vectorsv = (v1, v2, . . . , vn) in which each entry is an element of the
Beat SetB. On Rn(B) we can define a distance. Letv = (v1, v2, . . . , vn) and w =
(w1, w2, . . . , wn) be two vectors inRn(B). Thep-distance between them is defined as

dp (v, w) =

(
n∑

i=1

|vi − wi|p
)1/p

. (1)

The value ofp can be chosen according to the application or the kind of music
considered. In our examples and applications we take, for the sake of simplicity,p = 1,
the so calledblock distance.

The abovep-distance is defined only for rhythm sequences which have the same
length. Obviously, in most of applications, we must compare rhythm sequences of dif-
ferent lengths. Although it is possible to define a distance between vectors with different
sizes (the so called Hausdorff Distance) we prefer to use for comparison of arbitrary
rhythm sequences the concept of similarity in a particular way. So, the next logical step
is to put together all the possible rhythm sequences into a sameRhythm Spaceand define
aSimilarity Measureon it. This is as follows.

Firstly, we define theRhythm Space, denoted here byR, as the union of all
Rn(B), that is,R =

⋃∞
i=0 Rn(B). We name, alternatively, the elements ofR asRhythm

Vectors. Note that for each given Beat Set we have an associated Rhythm Space.
We introduce similarity measure onR as follows. Given an arbitrary rhythm vector
v = (v1, v2, . . . , vn), we define ak-level subsequencev(k) of v as any subsequence
with k elements extracted fromv, preserving the original order ofv. For example, if
v = (2, 0, 0, 1,−1, 0, 1, 1) we can extract five ordered four-levels sequences, namely,
{(2, 0, 0, 1) , (0, 0, 1,−1) , (0, 1,−1, 0) , (1,−1, 0, 1) , (−1, 0, 1, 1)}. It is easy to see that
a vector withn elements hasn − k + 1 k-level subsequences. Now, given two rhythm
vectorsv = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wm) in R consider allk-level se-
quences of both vectors, that is, the setsS

(k)
v = {v(k)

i , i = 1, 2, . . . , n − k + 1)} and
S

(k)
w = {w(k)

j , j = 1, 2, . . . , m − k + 1)}. If, for example,m ≤ n we only can consider
sequences with length smaller thanm, that is, we must take1 ≤ k ≤ min(m,n).

Formally, for eachk-level, we define the(i, j)-elements of thek-level Distance
Matrix D(k)of two vectorsv andw as:

[
D(k)(v, w)

]
(i, j) = dp(v

(k)
i , w(k)

j ) (2)

wherei = 1, 2, . . . , n−k+1 andj = 1, 2, . . . , m−k+1. Below we show a visualization



of a generalk-level Distance Matrix.

D(k) =




dp(v
(k)
1 , w(k)

1 ) dp(v
(k)
1 , w(k)

2 ) . . . dp(v
(k)
1 , w(k)

(m−k+1))

dp(v
(k)
2 , w(k)

1 ) dp(v
(k)
2 , w(k)

2 ) . . . dp(v
(k)
2 , w(k)

(m−k+1))
...

...
...

...
dp(v

(k)
(n−k+1), w(k)

1 ) dp(v
(k)
(n−k+1), w(k)

2 ) . . . dp(v
(k)
(n−k+1), w(k)

(m−k+1))




Although there exist many different measures we restrict our analysis, as men-
tioned above, to the block distance (p = 1) and the Beat Set toB = {0, 1} (Fig. 1).

Figure 1: Musical notation and correspondent coding

We get, then, ak-level Distance Matrix whose elements are non negative integers.
Now, we define thek-level Similarity Coefficientas the

c(k)(v, w) =
z(k)

(n− k + 1)(m− k + 1)
(3)

wherez(k) is the number of zeros in the matrixD(k). Roughly speaking the similarity
coefficient measures thesparsityof the matrixD(k). Greater the coefficientc(k), greater
is the similarity between the subsequences of levelk. In the extreme case a matrix with
all coefficients equal to 1, it means that one of the sequences has a perfect copy of it
contained in other one.

Now we can collect all thek-levels coefficients in a vector we nameSimilarity
Coefficient Vector(SCV). It reads like

C =
[
c(1), c(2), . . . , cmin(m,n))

]
(4)

In Fig. 2 we show an example of the 3-level Distance Matrix and its respective
SCV. Bellow we provide an example of this approach.

Example:
Take the Beat Set asB = {0, 1}. Let v = (1, 0, 1, 1) andw = (1, 0, 1, 1, 0, 1) be two
rhythm sequences inR. The possible3-level sequences forv andw are:

• S
(3)
v = {(1, 0, 1), (0, 1, 1)}

• S
(3)
w = {(1, 0, 1), (0, 1, 1), (1, 1, 0), (1, 0, 1)}

Let us take, for the sake of simplicity,p = 1 on the Rhythm Space. Since we must
take the distance between all elements of each level up to sixth level, one can guess that
a large number of evaluations is needed. We show below only the distance between the
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Figure 2: Building the Distances Matrix for the 3-level
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Figure 3: Example of two vectors and their Similarity Coefficients Vector (SCV)

combinations in the 3-level. According to the procedure describe above and shown in Fig.
2, we obtain the (2× 4) 3-level Distance Matrix:

D(3)(v, w) =
[

0 2 2 0
2 0 2 2

]
(5)

The 3-level coefficient can be read easily from this matrix and it isc(3) = 3/8 = 0.375.

The complete SCV (Fig. 3) for the above example is given by

C = [0.5833, 0.3333, 0.3750, 0.3333] (6)

In the next section we show the algorithmic implementation and make some addi-
tional comments on our model.



3. Algorithm Implementation

We have implemented an algorithm in MATLAB which is able to construct, manipulate,
and play the rhythm sequences defined by our model. We restrict our analysis below to
rhythms without accentuation and articulation and also without pauses. This is a crude
approximation to real rhythms and, in our model, it is accomplished by taking the simplest
Beat Set, that is,B = {0, 1}. These aspects will be added in a further implementation of
our formal modal described above.

We also devised a function to play back the input sequences, to do a subjective
evaluation of the result of the measure. The events correspond to sinusoidal functions
with exponential decay and we introduced a short tone at the starting point as a reference
for the beginning of the sequence.

3.1. Similarity Coefficient Vector

The algorithm picks two sequences of elements extracted from the Beat Set and computes,
for eachk-level, the matrixD(k). The meaning of a zero in a matrix element, corresponds
to a perfect match between sub-sequences of the two input vectors. At this point we have
as many matrices D as the length of the shortest input vector.

The sparsity of the matrix, which means the number of zeros in eachD(k) ma-
trix, will give information on how similar are the subsequences of that particulark-level.
The algorithm computes the ratio between the number of zeros and the product of the
dimensions ofD(k) for each k-level and stores those values in the SCV.
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Figure 4: Model for the creation of the SCV between the two vectors

3.2. Analysis by Single Values

In addition to the SCV, we thought that it would also be interesting to reduce the quest
for measuring similarity to a single value, enabling an easier comparison between the
sequences. We offer three different solutions for this problem.

It is clear to us that the content of the first element provides a low level of infor-
mation, as it only tells us wether the distribution of events (1s) and no-events (0s) in both
of the vectors is even, or it is polarized towards having more events or no-events. On
the other hand, the content of the last element of the SCV gives us the highest informa-
tion. Finding a non-zero value in this position implies that the shortest input sequence
exists at least once in the longest input sequence. In most of the comparisons this element
will be zero. So the last non-zero element will tell us that what is the size of the longest
sub-sequence that is common to both input sequences.

Another parameter that may be useful is the sum of the elements of SCV, which
will take into account the coefficients from all thek-levels. For example, by considering
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Figure 5: Vector with high values of the Similarity Coefficients values

the input sequencev = (1, 0, 0, 1, 0, 1, 1, 1) we ran the distance for all possiblew vectors
of length 8. In Fig. 5 we present two vectors that show high similarity with the presented
sequence. By maximizing the sum of the Similarity Coefficients vector and removing the
input vector from the competition, we arrive to the value

∑
Ci = 1.7829 with the most

similar vector beingw = (0, 0, 1, 0, 1, 1, 1, 1) as can be seen in Fig. 5 (left). If instead we
use the same vector and minimize the sum of the SCV elements, we get the least similar
vector. For the example above the resultant value is

∑
Ci = 0.5179, and the resultantw

vector will be the no-event vector.

However, the sum above, does not consider, that there is greater importance in the
rightmost elements of the vector. This can be achieved by taking a weighted sum of the
elements, with an increasing profile of the weights.

4. Computer Applications

The formal model presented in this work is flexible enough to be used in several appli-
cations from rhythm analysis to creation of new rhythms, etc. Below we describe just
two applications, namely,Net-Rhythmsrelated to Neural Networks, developed by one of
the authors(JM), andRGemedeveloped by another author (MG) in which AI agents learn
rhythmic sequences from one another.

4.1. Neural Networks and Rhythms

Net-rhythms is a tool developed to classify and store rhythmic representations in a neural
network. The framework used by this tool is constituted by a Neural Network called the
SARDNET [James and Miikkulainen, 1995], an extended Kohonen self-organising fea-
ture map [Kohonen, 1985]. This network was developed to study the study of sequences
and organization of phonemes in the context of language. We decided to explore its po-
tential in the representation of rhythmic sequences, and new problems arose particularly
related to the measurement of the distance between two vectors. The diagram on Fig. 6
explains how the network works.

The rhythms are coded according to the representation depicted in Fig. 1. When-
ever a small rhythmic sequencevt in time stept reaches the input, the distance from that
sequence to all weight vectorswj is computed. The neuron corresponding to weight more
similar to the input, according to the defined distance, is activated and removed from fur-
ther testing. As time progresses all activations are decayed, implying that after some time
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Figure 6: Diagram of the Sardnet with three activated neurons

steps there will be a ladder of activations in the network. In Fig. 6 there are three activated
neurons represented by grey tonalities, corresponding thew14 weight to the first activated
neuron, andw2 to the last one. Finally, after a complete sequence on timeT , the weights
from the activated neurons are slightly adapted in order to decrease their distances to input
vectors.

This network can represent in a bidimensional space the rhythms that arrive se-
quentially to the input, and self-organize simulating a learning procedure.

As stated before, the choice of the wining neuron implies the measurement of the
distance from the input to each of the neurons from the Sardnet. The distance proposed by
the original creators of the network was the Euclidean distance, however there are some
problems as this measure. The Euclidean distance does not allow sequences with different
lengths and does not capture the similarity between equal sub-sequences that have their
position shifted in time. The use of the SCV, and the other measures presented in Sec.
3.2, help solving the problems presented above.

4.2. Agents and Memes: A Rhythm Imitation Society

RGemeis an artificial intelligence system for the composition of rhythmic passages in-
spired by Richard Dawkin’s theory of memes that is being presently developed in the
Future Music Lab at the University of Plymouth. According to Dawkins [Dawkins, 1989,
Dawkins, 1991], memes are basic units of cultural transmission in the same way that
genes, in biology, are units of genetic information. Other researchers have already stud-
ied some applications of this concept in music [Cox, 2001, Gabora, 1997]

In RGemea rhythmic composition is understood as the process of interconnecting
sequences of basic elements (or ”rhythmic memes”) that have varied roles in the stream.
Intelligent agents learn these roles from examples of musical pieces in order to evolve
a ”musical worldview” which consists of a ”style matrix” of basic rhythms. During the
learning stage, agents parse examples of pieces of music in search for rhythmic memes.
These (candidates) memes are then compared with the agent’s database of memes which
we named Style Matrix (see Table 1), and are stored or transformed accordingly. For
example, if the candidate meme is not already present in the agent’s Style Matrix, it is



copied and it’s weight is set to 1. Now the model of distance of rhythm patterns is used in
this application in order to upgrade the weight of each meme in Style Matrix. In this way
the style of the memes evolves in time. InRGemeit was used the block distance. So all
memes in the agent’s style matrix have their weight upgraded according to their distance
to the candidate meme.

Meme dFL dLL nL W
01011101 1 1 6 1.0385
11011101 1 1 31 1.0424
10001000 1 1 1 1.0181
10010101 1 1 1 1.0171
11011010 1 1 1 1.0159
10011010 1 1 4 1.0090
10011001 1 1 4 1.0075
11111111 1 1 1 1.0040
10000000 1 1 1 1.0000

Table 1: Extract from an Agent Style Matrix

where

• dFL: date the meme was first listened to
• dLL: date the meme was last listened to
• nL: number of times the meme was listened to
• W: upgraded weight

In the second stage, the system creates new rhythmic sequences ( Production
Phase) according to the musical structures and rules that were previously extracted from
the styles of the pieces that were used in the learning stage. At this stage, agents are able
to learn from each other’s ”compositions” and capable of evolving new rhythmic styles
by adapting to each other’s rhythms. Clearly, new distances and similarity measures as
shown above can be implemented inRGeme, which, of course could result in a different
evolution of the memes society. This is presently under investigation.

5. Conclusion and Perspectives

We presented a model for measuring similarity in a general Rhythm Space, which include
all the possible rhythm sequences. The key issue and innovative contribution of this work
is the hierarchical subdivision of rhythm sequences in several levels and the construction
of a Distance Matrix for each one of them. The information is coded in a Similarity Coef-
ficient Vector (SCV), whose entries estimate the similarity between rhythm sequences in
differentk-levels. These coefficients are related to the sparsity thek-levels Distance Ma-
trices. We also provided a easier to read single value measure for similarity. In addition
we presented two applications for our formal model. Clearly, it can be applied in many
other areas of music analysis and composition. It can be also applied on musical learning
devices, such as self evaluation systems to relate played sequences to previously defined
ones.

There is plenty of room to extend this work. For example, is yet to be done the
comparison between this distance with other well established similarity measurements,
such as the Levenshtein and Hausdorff distances. In addition to the block distance, we
could use new basicp-distances and check which of them is better to the applications the
user has in mind.



A further and also important problem is to link the formal similarity in this work
to the rhythmic perception of human beings.

In this paper we have only shown the potential of our methods to construct simi-
larity measures. The problem of perception of rhythm sequences deserves a deeper study
by itself. This, as well comparisons with other methods, will be done in a future work.
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