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Abstract. In this paper we discussthe application of the Kohonen Self-

organizing Maps to the classificationof triadic chordsin inversionsand root

positions. Our motivation started in the validation of Schonbérgpothesesf

the harmonic featuresof each chord inversion. We employedthe Kohonen
network, which ha®eengenerallyknown as an optimumpattern classification
tools in several areas, including musio,verify that hypothesisThe outcomes
of our experiment refusthe Schonberg”sssumptionn two aspects:structural

and perceptual/functional.

1. Schonberg’s Hypothesis

In theHarmonielehre Schonberg (1974) discuss theculiarharmonicfeaturesandrules
of the first and secondtriadic inversionsat the relation of root position triads (53). The
first inversion (6) does not require any kind of special treatmentthigesecondinversion
(64) does.The secondinversion,as he argues,has an ambiguity constitution,being it
relatedto its root positionchordandto a chorda fifth above.This ambiguity has been
lead to specific harmonic rules in the attempt to characterize the function of thisketord.
instance the tonic secondinversion chord can be analyzedas 164 or V64, and in this
case, the cadential 64, there are no specific voice leading proceduresin bass. In
Schonberg’s assumption there is a contrasting forces inviolibd 64 chord due by the
derivedharmonicpartial structure.There are harmonicpartials that emphasizethe bass
note as fundamental(they match the bassharmonic series)and there are partials that
attenuatehe strengthof the bassas fundamentalthey do not matchthe bassharmonic
series). In the first inversion chord, the harmonic partialsrizththe bassnote (in this
case, the third) areigherthanthe onesthat matchthe fundamentalln the sametime, at
the second inversion chord, the harmonic partials that mattehbassnote (in this case,
the fifth) are closer than ones that matchesthe fundamental.One can resumethe
Schdenberg’s treatment of second inversion chord as mitvhgssvoice by stepwise
or staying on the same note, after and beforectinisd, producingan aural perceptionof
a chordover a passingnote, solving the ambiguity. For the sakeof clarity, the above
statement can be illustrated in the following table:



Table 1. Harmonic partials set in a C major root position and inverted
chords (the played notes in capitals letters; the harmonic partials in
lower case; the subscript letters are not considered by Schédnberg;
the notes that matches the bass in blue and the harmonic partials that
contradict the bass in red).

Harmonic partials of triadic chords

Root position (53)

c g c e g

G g D G b d

First inversion (6)

E e B e o# b
d e
G g d G b d
C C G C e G

Second inversion (64)

G 9 d G b d

Analyzing the table and considering the contradictory harmuanittals, which are
not considered by Schénberg, one can note that the root pgsigisentproblemsin the
same way that the second inversion does st stressthat Schonberglo not notethe
harmonic sets to theot positionchord- in this sense his argumentbecamefragile and
naive. Otherwise, he neither evaluties explanationto the minor tonalities,what seems
to be a recurrent conduct of music theorist in general.

In Oliveira et al (2005), we demonstratedthe fallacy of Schénberg's
argumentatiorfor a single major tonality using a Kohonen Self-organizingMaps. The
experimentresults, demonstratedhat the root position chordsand its inversionswere
classifiedin nearclusteringneighborhoodlf the Schonberg sypothesiswere correct,
the 64 chords should be placed in a fifth above chord neighborhood.

In this paper,our inquiry is motivatedby the historicallack in musictheoryof a
solid argumentation explaining timeinor chords.The supposederfectionof major triad
was explained by the relations of the harmonic pargigeciallythe six foremostones.
If thereare difficulties to justify the major chord “perfection” in this argument,in the
minor chords, the argumentation problems about its constitution andtigiak, will be
more prominent. To escapefrom this traditional lack, presentin harmonystudies,we
mustverify the resultsof a SOM working on minor, major and diminishedchordsas
input values. Our input patternsset consistsin the 252 chordsfrom the twelve major
tonalities (21 chordsfor eachtonality). The use of a SOM to classify chordsis well
known in the literature about cognitive (and computerassisted)musicology [LEMAN

L If the perfection is derived from the harmonic series, one can note that the seventhbagsatoubles
to this description.



2000, 1995, 19911990]. However,usuallythis sort of researchdoesnot considerany
aspect of chord inversion. Thattise main objectiveof our investigation.We expectthat
the clustering map will create the same categorization for the inverted choatlsviagor,
minor and diminishedtriads. The resultsshould appointthat the problem explanations
based in the harmonic seridisat justify the structureandthe harmonictreatmentf the
inverted chords, are misleading for major, minor and diminished chords.

2. The Kohonen’s Self-organizing Maps.
2.1. The Self-organizing Maps.

The main objective of EohonenSelf-organizingMap (SOM) (1997)is to determinethe
mappingof a n dimensionalnput signalssetinto a bi-dimensionalgrid. This mapping
occurs in an adaptative atwpologically orderedfashion. The SOM architectureconsists
in two layers:the input layer of n dimensionality(n equalto the dimensionalityof the
inputs set) andthe outputlayer characterize@s a bi-dimensionalgrid of neurons.Each
input neuronis fully connectedwith the bi-dimensional grid, where each of the

connections is represented &y associategynapticweight. The weight vector of a grid

unit consists in the set of weight values of all connections.

The algorithm responsibleto the map formation initializes the grid connections
weight with small random values. We cstandout threeprocessesvhenthe networkis
initialized: competition; cooperation; synapédaptationTheseprocessesireresponsible
to the formation of the map in an unsupervised learning method [HAYKIN 2001].

Competition:

When an input patternis presentedo the network, just one grid unit must be
activated by that pattern. This activated usiitalled the winner neuron(winner-take-all).
A discriminant function provides the competition bases in this process.

Cooperation:

The winner neurondetermineghe centerof the topologicalneighborhoodregion
of laterally excitedneurons furnishingthe basesof cooperationThe neighborhoodarea
can be expresseds a rectangularfield or a hexagonalone, as showedin the figure
bellow.

Figure 1. Rectangular and hexagonal neighborhood.

The lateralinteractionamongthe winner neuronandits neighborsis represented
by the neighborhoodopologicalfunction. The maximalfunction value is reachedwhen
the distanceamongthe winner neuronandits neighborsis equalto zero. Otherwise the
minimum function value occurswhen the distanceamongthe winner neuron and its
neighbors tends to the infinity. The gaussian function satisfies the above necessigses and
widely employed in SOM networks:
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where thelj, i represents the lateral distarlmstweenthe winner neuroni andthe excited

neuronj. The o representshe effective width of neighborhoodas showedin the Figure
1.

Synaptic adaptation

In this phase the synapticweight are adjustedto that the winner’s weight vector
approximates to the input vector Oncethe networkis continuouslyfeedwith the input
set, the algorithm produces a topological map ordination of the fedeadmgto similar
values of the weight vectors for the adjacent neurons.

2.2. The SOM Algorithm
The SOM Algorithm could be summarized in five steps:
1. Initialization

Attribute randomsmall valuesto the synapticweightsof eachneuron. This step
ensures that the map will have no previous organization at all.

2. Sampling

Presenta randomchoosesampleX to the network, from the input spacewith n
dimensionality, being = [X;, X,, X, ..., X]".

3. Matching

Find the winner neuroifX), with the weightvectorW = [w,, w,, w,, ..., w,]’,
in the epocht, closerto the vector X presentedo the network, adoptingthe minimum
Euclidian distance criterion:

I(X) = argmjinHX —V\/J.H,j =12,..,n

beingn, the total number of grid neurons.
4. Updating
Adjust the synaptic weights to every grid neuron by the actualization formula

W (t+1) = w; (1) + (1)}, (O(E) = w; (1))

where 1(t) is the learning rate, f ;. (t) is the neighborhoodtopological function
surroundingthe winner neuron.Both parametersre dynamicallyvariedto ensurebetter
results.

5. Repetition
Return to step 2 until no significant changes occur in the features map.

The competitive learningappensn the secondstepwhenthe weight vectorsare
updated.To eachinput presentedo the network only one neuronmust be active in a
specific instant. In this sense,the competitive learning has a priority to define the
statistical features more outstanding for the classification of an input patt@HAYe<IN
2001]. In the third step, the cooperative process among theguidnsis determinecby
the neighborhood area of the winner ufjjt§.



The network training consists in two distinct phases: the rough phaseedire:-
tuning phase.The first is characterizedby the topological ordination of the weight
vectors. In this phase, the learnirage shouldbe setin value closeproximity to 0.1 and
the neighborhoodareaof the winner neuronshouldtake almostall neuronsof the grid.
During therough phasethe learningrate decreasesmoothlyuntil it reacheghe value of
0.01. The secondphaseis necessaryo achievea fine-tuning ordination of the features
map. To makethe statisticalprecisionas good as possible,the learning rate should be
maintained closer to 0.01; it should not take zero to avoid a meta-stablef skegrid (a
topological impairment). The neighborhood area must cootdinthe next neighborsof
the winner unit, possibly reducing its area to one or zero in the fine-tuning phase.

3. Method

The networkinput dataseis a groupof vectorswith dimensionalityn=63, being n the
necessarywumberof pitch-classego representhe sixth first harmonicpartials of each
chord note, without octaveeduction.The value of the partialsin eachvectorwas setup
in two fashions:decreasing-ibonacciscalingand an unique value of 1 for all the six
partials. Both alternativescaling procedureshave leadedthe network to similar results
[OLIVEIRA et al 2005], and we adoptedthe Fibonacciscaling for the experiments
described in this paper. The SOM network employed has a total of 2500 unitgjleEsa
matrix of 50 x 50 cells.

To makethe topological error as minor as possible,we adoptedthe optimum-

learningrate of a1=0.1 and a2=0.037 for the rough and fine-tuning training epochs,
respectively. The rough epoch consisted in 500 iterations and the fine-tuab@Oi(the
network training employed a learning rg@wer functionin sequentiainput presentation
mode). The neighborhoodadiuswas startedwith 30 units (rough phase)anddecreases
to 1 (fine-tuning phase).

4. Results and Discussion

During the network training, the quantizationerror was reducedto zero, as shown in
figure 2, in the fine-tuning training phase.After the training period we can obtain the
topological representationof the network responseto the input set, as figure 3
demonstrates.

The topological map shows the clustefsachpatternof the input set. In a very
first observatiorone can seethat the map demonstrateshat similar chordsare grouped
together. This fact proves that the outcomeis coherentover the network behavior.
Similar chords have common values in the input vector, so it's naturdhéyedre placed
in near positions of the topological map. For instance,root position chords were
classifiedas very similar categoriegshanthe invertedones.One canaskwhy a chord of
C6 is classifiedcloserto C53 thanEm53if it hastwo commonnoteswith both chords.
Could be argued that the fattvas classifiednearto C53 than Em53 becauséhe octave
interval has common values in the input vectorthaiminor second(obviously!). In this
sense, the octave similarity is due to the equivalence of some input vector values.

RegardingSchénberg’'sargumentationgboutthe 64 chords,the network results
should put this sort of chord far from tha&ot positionones.The result,asin the figures
bellow, clearly dismissesuchan argumentationThe argumentf the authorcamefrom
the fact that there are harmonic partials that sthessassnote and othersthat emphasize
the fundamentalnote. One can take this statementas attempt to include perceptual
properties in the scope of the explanation about chord similafiethe otherhand,one
can take that Schonberg’s asseri®an attemptto include functional statementanto the



justification. But, besides his statements, the SOM network ptheggfl chord generally
in the sameclusterthat the 53 chord, as being the samecategory.The topological map
grouped thechordsandits inversionsin the sameneighborhoodn 97.22%of the cases
(seefigure 5). The isolatedchords, besidethe fact they are placed distantly from its
similes, they are distant from the neighbor chords as should be noted in a three-
dimensional representation of the topological map (figgrel'he presenceof the hills on
this map indicatesthe growing of the Euclidian distanceto the non-similar neighbors.
This statementevealsthat the SOM network classifiedthosechordsin localizationsfar
away from theirsimiles, but categorizedhey as being different from the other chordsin
the same topological region.

Recalling that the 64 inversionwas classifiedas the samecategoryof the root
position chord, the overall outcome corroboratesthe Enlightenmenttheorist Rameau
(1971),in his argumentatiorof the chordsinversions.Rameaudid cometo his results
inside a deep reflection and sometimes an unusual mathemati¢kerenochord. Our
results came from the proximal values of the input vectors in octave interval (see table 2).

Table 2. Input vectors of a note C and octave above C. The boldface items
show the coincident partials .
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Based on the results of the SOM network, we can say that Schénberg’'s
affirmations and our refutations are founded on two points: structural and
perceptual/functionaFirstly, we will analyzethe structuralpoint in the basesof three
aspectsthe temperamentthe consideratiorof only the sixth firsts harmonicpartials;the
dynamic behavior of harmonic partials. Secondly, the argumentation about the
perceptual/functional considerationsi¥ertedchordsshouldbe took in a different way
that Schénberg considers it, if he does at aH@rmonielehre epecially).

In the structural consideration the non-temperecharmonic seriesusedin the
Schonberg’statementdoesnot seemdo be the betterway to explain the emphasison
the bass notes by the coincident harmonic partials generated by thehatfttsnotes. To
evaluatehis hypothesiswe adoptedthe samerepresentationn the constructionof the
inputs patterns,i.e. non-octavereducedpitch class.In this sense,we had model the
experimentusing the same presuppositionsprovided by Schonberg,even so his
hypothesis was not confirmed. Other issue thastbe considereds the useof only the
six first partials.Schénbergusesonly this setof partialsto avoid the problemsthat the
seventhpartial brings to the scené. The non-consideratiorof the seventh partial is
misleading in the sensethat one uses just the corroborative aspectsof a natural
phenomenorior the sakeof argumentWe cansupposehatthis fact is justified by the
necessity to establislhnaturalfoundationto the tonal system.This naturalfoundationis
asartificial asany abstractand arbitrary possiblesyntacticsystem(twelve-tonescaleor

2 For furthers stances see Rameau (1971) and specially the translator’s introduction.
3 Even in Structural Functions of Harmony, Schonberg does not talk about chord inversions.

4 Rameau,in his treatise, sparesthe very same problem skipping the seventh partial from his
explanations (1971, p.7).



microtonalscaleetc) becauseahey did not take the naturephenomenas whole coherent
instancebut just somepartsof it. Thethird point in the structuralaspectsconcernsthe

dynamic behaviorof harmonicseries(in nature).Besidethe above considerationghe

harmonic series is not a static and stable set of frequencies over thed@pendenfrom

its physical instantiation. If the explanation for the inverted chibedsson the harmonic
partials, a chord structure played in soméhefmusicalinstrumentsor electronicdevices
should be very confusing for a listener. For instanaaa@ndinversionchord playedby

the clarinetistsdoesnot presentshe sameset of harmonicsas an idealized harmonic
series.Consequentiallythe explanationof chordinversionswould not apply to sucha

physical instantiation. Could the relation of a chord #sthversionsbe accountedn the

perspective of an idealizexhd incompleteharmonicseries?The presentexperimentdoes
not takethis fact into consideratior{our goal was just testthe Schénberg’shypothesis),
but further developmentsve are designingoperateover a non-temperedharmonicseries
with spectral envelope behavior extracted from various musical instruments.

To concludeour divagationwe should state some perceptual(and functional)
considerations. Perhaps, the better justification for the closer relatio®datreord with a
53 chord &ifth abovecamefrom a perceptuakliché and somecounterpoinfprocedures,
as theretardoor suspension (the dissonance should ever dedikerall the thingsfall to
the ground, as statedby Fux (1965)in the XVIII century). The perceptuajustification
doesnot necessarilyrequire an acousticcorrelationas Schonbergried to do, because
sometimest is morea subjectof cultural stereotypecdexpectationsthat are meaningful
just to a part of the human beingsdis not absolutelya propertyof nature.Being that,
perhaps the some music theorists, in an attempt to jiiséfyaturalnes®f someabstract
system, attaches physicalistreasoningo somepropertiesand procedureoming from
the level of languageand art, that are not just a physical phenomenaFinally, we can
recall that the Schonberg’s physical hypothesis ts&wendinversionchord, basedon a
staticandidealizedharmonicseries,was not confirmed by the experimentdescribedin
this paper.In further researchesve intendto examinethe limits of the relation of tonal
functionality and structuralacousticsaspectsof triadic chords, using a representational
system closer to the acoustic phenomenaand capable to account for harmonic
progressions.

4.1. Graphic Results
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Figure 2. Quantization error.
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Figure 3. Topological Map. The color bar indicates the Euclidian
distance among clusters.

Figure 4. The three-dimensional representation  of the topological
map.
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Figure 5. The grouping of the chords and its inversions. Encapsulated
in black are the isolated chords, linked with its similes.
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