
VIII BRAZILIAN SYMPOSIUM ON COMPUTER MUSIC
FORTALEZA – 2001

Paper (Final Version)

Title: Some Heuristics for the Development of Music Education Software:
First Steps Towards a Methodology

Topic: Systems for Musical Education

Paper category: Discussion

Authors:

Luciano Vargas Flores

Rosa Maria Vicari

Marcelo Soares Pimenta

[lvf, rosa, mpimenta]@inf.ufrgs.br

Universidade Federal do Rio Grande do Sul (UFRGS)
Laboratório de Computação & Música - Instituto de Informática - Campus do Vale

Av. Bento Gonçalves, 9500 Bloco IV - Agronomia
Porto Alegre - RS - Brasil - CEP 91501-970

Some Heuristics for the Development of Music Education Software:
First Steps Towards a Methodology

Luciano Vargas Flores, Rosa Maria Vicari, Marcelo Soares Pimenta

Laboratório de Computação & Música – Instituto de Informática
Universidade Federal do Rio Grande do Sul (UFRGS)

Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil
{lvf,rosa,mpimenta}@inf.ufrgs.br

Abstract. Our Computer Music group has been researching and
developing software for Music Education since 1995. In search for a
specific development methodology for Music Education software, we
have collected some heuristics that are very likely to constitute its
basis. These heuristics are presented and discussed in this paper. Our
set of heuristics cannot be exhaustive, but it does cover important
issues of Music Education software development, and we hope they
may even help other development teams.

1. Introduction
In the last years, our work has been oriented towards the construction of models, concepts and
tools for computer-based Music Education. In the beginning, this work was being conducted
in a very unsystematic way with respect to software engineering methodologies. As a
consequence, some problems began to emerge at that time, motivating us for the creation and
proposal of a specific development methodology for Music Education Software (MES). These
problems were related to issues such as software quality improvement, remote cooperation
support, support for developers from outside the Computer Science area and nonspecificity of
usual software development methodologies. In addition, we found that the expertise our
research group acquired after these years of dedication could be very useful if registered and
made available to the interested public.
MES development is essentially an interdisciplinary team activity. Therefore, it must be
practiced as a principles-based approach, which we believe are essential to the multi-person
construction of multidisciplinary environments. It is our view that such principles are much
more important than any particular notation or methodology. In fact, these principles will
enable the software designer to evaluate various techniques, tools and possible technological
solutions, and to apply them when they are appropriate.
Such motivation led us to begin a careful inspection of our practices, trying to apply more
systematic methods and then to organize the satisfactory results as a set of heuristics for MES.
Such methods should integrate the coming methodology in order to suit it for the Music
Education domain. Consequently, two main questions guided us in that investigation:
• How to build educational software, in general?
• How to build Music Education software, specifically?

In the present paper we will share some of these heuristics already found and being used in
our projects. It’s still not the final proposal of our development methodology, but rather a
collection of important issues regarding MES development and some suggestions that address
these issues. Surprisingly (or not!), many good solutions are proposed by researchers of our
own country, Brazil. To make comprehension easier, they will be presented in the same
sequence in which they would be applied to a real development project, following a software
life cycle. We hope this paper may resume some contributions from the field of Software
Engineering to the Computer Music science’s educational discipline.
The paper is structured as follows: In section 2 we present some issues to be considered
before starting the developing process; section 3 describes heuristics for the analysis and
design phases of the software life cycle; in section 4, implementation phase issues are
discussed; section 5 suggests some techniques to be used in the evaluation phase and, finally,
in section 6 some conclusive notes are presented.

2. Preliminary considerations
MES is educational software, and one must agree that this kind of software has some
differences in comparison with more usual software. These differences refer to:
• Its users: students and teachers;
• Its user interface: should be more adaptive to the user than the generic user interfaces of

other software;
• The involved disciplines: Cognitive Sciences, besides Computer Science and the specific

domain treated in the software; and
• The tasks it helps the user to perform: the ones involved in teaching-learning, which is a

delicate process that, in order to be successful, should avoid interference caused by
problems in software usability.

As a consequence of dealing with the knowledge domain of Music, MES presents even more
specific characteristics, such as an inherent employment of multimedia, a demand for a better
quality of the employed sound/music media (audio medium) and a demand for correct
synchronization between audio and visual media.
So, the process of developing software for Music Education has itself to be different from the
ones for other software, considering the idiosyncrasies mentioned above. Thus, next we will
present some overall concepts about this process, which are consequences of observing the
particular requirements of MES.

2.1. Interdisciplinarity
One of the first things to have in mind, in MES development, is that one will be dealing with
an interdisciplinary task. This interdisciplinarity occurs in two main levels: 1) a knowledge
interchange between the members of the development team, which come from different
knowledge domains (the multiple disciplines involved), may be noticed; and 2) the expertise
of each member may be itself interdisciplinary.
In the kind of software discussed here, there are basically three generic disciplines involved:
Computer Science, Music and Education. So, the members of a MES development project
should come at least from these three areas. But they may also be specialized in disciplines
that have their origin in the interconnections between these basic areas. Such are
interdisciplinary knowledge domains that are very contributive in projects like these. For
instance, in our group’s latest projects, there have took part Computer Science experts in
Computer Music, Computers in Education, Human-Computer Interaction and Multimedia,

and musicians with expertise in Music Education and in the Cognitive Psychology of Music.
A good discussion of our interdisciplinary experiences may be read in Krüger (et al., 1999).
Finally, sometimes forming such a group of experts in interdisciplinary domains is not
possible. This could be the case of interested musicians and Music teachers who don’t have
contact with the Computer Science community. If this is the circumstance, then at least the
developers of one area should talk to consultants or try to acquire knowledge themselves (like
from books, magazines and symposia) in the other areas involved. Our experience shows that
it will be difficult to get good results without following this interdisciplinary working
approach.

2.2. Software life cycle
Another important issue to consider, before starting a MES development process, is the notion
that, as for any kind of software, this process comprises several stages, or phases.
Traditionally, these phases are: 1) requirements analysis and specification; 2) design; 3)
implementation; 4) verification and validation; and 5) maintenance. Together, they make up
what is called the software life cycle (Ghezzi et al., 1991, p.6-8; Sommerville, 1982, p.3-5).
We found recently a good work by Winckler, Nemetz and Lima (2000), where they suggest
an extension of the User-Centered Design (UCD), considering the differences between
ordinary users and the student, and so adapting that method to support the development of
educational software.
This was done by extending two phases of the UCD software life cycle (Figure 1):
• The initial phase, that in UCD corresponds to “knowing the users and their tasks”, was

extended into “knowing the users, the students and their tasks”. Students are users with
special needs, they should not be treated like ordinary users. Such special needs refer to
the definition of the software’s content and pedagogical approach. Besides, such a
software may have different groups of users, some of them might be students, some not,
like teachers, for instance. Therefore, in this initial phase, the different user groups and
their necessities should be identified.

• The last phase, known in UCD as “usability evaluation”, was extended as
“multidisciplinary evaluation”. The authors have thought that, in the case of educational
software, a broader evaluation should be carried out. One should evaluate, for instance,
the promotion of students’ interest, fitness of the chosen content and pedagogical
approach.

Actually, in this work by Winckler and his colleagues, they propose the use of their extension
on the development of the software’s user interface (UI). But they defend that “one of the
most important aspects of educational software is the interaction between the student and the
system, and the dialogue that’s established between the parts. So, to separate what is the
software’s UI from the software itself is often not so easy” (idem, p.19). In fact, their
extended UCD life cycle may be applied to the whole educational software development
process. One may even identify to which traditional phases of a software life cycle correspond
the phases on the modified UCD life cycle, as seen in Figure 1 (traditional phases are
italicized).

Figure 1 - Modified UCD life cycle, with corresponding phases of a traditional software life cycle.

3. Analysis and design
The requirements analysis and system design phases, together, match the “knowing the users,
the students and their tasks” phase of the described modified UCD life cycle. Usually, in this
phase, the software is planned, or designed. This design is based upon the software’s
requirements that, in turn, are defined by the developers after a context analysis. But what
could be different in this process for educational software development?
In this case, the context analysis, for instance, should observe that the users are students and
teachers, the tasks they perform are the ones involved in a teaching-learning process and the
context in which this happens is (usually) an educational organization (school, university,
college, etc.). Besides the user profile (that must include which are the users: students,
teachers or both), should be verified some other context issues, like how the students’ learning
is evaluated, what pedagogical approach does the school adopt, what is the school’s hardware
infrastructure (computer labs), and cultural aspects.
Questions that define the new task (because software usage will change the way the teaching-
learning process was being carried out) should, in the same way, consider educational issues,
like what pedagogical approach to adopt. This question, for example, helps to determine
which kind of software to develop (which teaching-learning strategies it will apply). Gamez
(1998, ch.4) suggests an agreement between the two main pedagogical approaches,
behaviourism and cognitivism, and different kinds of software: tutorial and “drill and
practice” systems follow an algorithmic approach, represented by behaviourist learning
theories; simulation, educational games, exploration and discovery micro-worlds, and expert
systems follow an heuristic approach, represented by cognitivist learning theories; and finally,
Intelligent Tutoring Systems (ITS) combine both approaches.
It is obvious that Music plays an important role in MES, more than in other multimedia
software, and therefore should not be forgotten in the requirements specification. Thus, one
should define: which audio quality the Music educational task requires; which technologies
should be used for sound emissions (e.g. digitized audio, MIDI, etc.); which Music notation to
use (based on the one already known by the aimed students); and if the system has time
constraints (Has the rhythm to be perfectly reproduced? Sometimes not, like when the content
deals just with note pitches. Should musical events be perfectly synchronized with visual
elements?). Metaphors to be used on the UI’s visual design, for user interaction with the
Music, must reflect what the user knows about this domain (that’s why we need to do an
extensive context analysis and user profiling). For example, guitar students may prefer to see
chords represented (and to manipulate such chords) in a guitar tablature, rather than in a
keyboard-like visual representation.
To help the definition of the software’s requirements we suggest one to consult the
recommendations’ (guidelines, rules or heuristics) literature. “Guidelines characterize
themselves as being the publishing of sets of suggestive (...) rules for the design of interactive

systems. In general, such are very extensive publications, constituted of generic
recommendations, empirically derived or validated by the scientific community” (Valiati et
al., 2000). There are already such publications that aim educational software development.
Our group suggests those proposed by Gamez (1998) and Valiati (2000), and one specific for
MES, by Krüger (2000). All these are meant for software evaluation purposes, but may be
used “a priori”, in the following design process.
In software design, besides following guidelines, we’ve been having success in using
Swanwick’s (1979) C(L)A(S)P Model to define which musical activities to offer to the users.
According to this author, in Music Education one should care to promote various musical
experiences, in which the students could play several roles. His model classifies such
experiences into five areas: Composition, (Literature studies), Audition, (Skill acquisition)
and Performance. Brackets mean that those activities are secondary to the educational
process, since they result in knowledge about Music, and not in a direct involvement with
Music as the remaining ones. So, when designing MES, our group tries to offer most of these
activities as system modules (or UI presentation units), as seen in Krüger (et al., 1999).

4. Implementation
This phase corresponds to the modified UCD life cycle’s “prototyping” phase. Here, the
developers will use the software’s analysis and design resulting specifications. With this
documentation, they should build a first prototype of the software, which is then evaluated,
reviewed and redesigned, in a cyclic development process. In each cycle, new functionality is
added and evaluated problems solved, originating several versions that evolve into the final
product.
For this phase, what we verified is that multimedia authoring tools may be acceptably used.
One of their advantages is that they incorporate very high level programming languages,
along with visual programming, allowing even inexperienced programmers to build
satisfactory systems. They are also fast-prototyping tools, and fit well in the prototyping
cycle, since one may build a first, functionally poor version of the software, and continually
add functionality until it turns into the final product.
A disadvantage of such tools, on the other hand, is that in some cases they may demand some
kind of adaptation to fulfill musical requirements. They offer only high level of abstraction
functions to the programmer and so, for Music, they usually only offer sound file
manipulation functions (e.g. play, stop, pause, etc.). Such functions will be useless if someone
needs to work at the level of musical events (handling MIDI events, for example).
Consequently, it may be needed to extend the musical capabilities of such environments with
libraries written in other programming languages. Flores (et al., 2000) describes such a case,
in which a software built in Macromedia’s ToolBook™ environment demanded a MIDI
events handling DLL written in Borland’s Delphi™.

5. Evaluation
In dealing with MES, the “multidisciplinary evaluation” phase of the modified UCD life cycle
suggests that one should evaluate all the prototype’s different aspects (usability, underlying
pedagogic theory, etc.).
Experiments have shown that combining several evaluation techniques helps to identify a
greater number of problems in a wider set of domains. For instance, Nemetz (et al., 1997)
says that some usability problems are only identified in user tests. In an experiment with one
of our software, user tests and heuristic evaluation, with both Music and usability experts,
were made (Winckler et al., 1998). Many problems concerning the musical domain were

identified by the Music experts, but these proved to be not as effective as the usability experts
in identifying UI usability problems, showing that usability experts cannot be replaced.
A satisfactory combination for our projects’ purposes has been the same used in Winckler’s
experiment: user tests; heuristic evaluation (Nielsen, 1997) with usability experts; and
heuristic evaluation with Music experts. But we encourage the trial of other evaluation
techniques as well (e.g. the ones described by Nielsen & Mack, 1994).
We may also not forget to mention the use of guidelines in an “a posteriori” checking of the
software’s attributes. As said before, there are already such guidelines specific for educational
software (Gamez, 1998; Valiati, 2000), and even a script for MES assessment (Krüger, 2000).

6. Conclusions
Research about the use of computers in education already exceeded the questions concerning
their utility for educational purposes (since, today, this utility is incontestable), and now
investigate how they may be used to improve the teaching-learning process (Gamez, 1998,
ch.4). Yet, it seems to us that the development of educational software is still rarely following
any software engineering methodology. In fact, it is even difficult to set up such a
methodology, because the development procedures, in this case, are very user/task/context-
dependant, and this makes it hard for one to define any generic solutions. On the other hand,
our research group’s experience is verifying that some practices indeed help developers in
building useful and usable educational software. Such practices were suggested in the
heuristics presented in this paper.
Clearly, heuristics are not sufficient to drive the development of MES. In fact, these heuristics
are general and abstract hints based on our group’s experience in developing such software.
Indeed, in order to improve the quality of MES, the software designer should be equipped
with appropriate methods and specific techniques that help to incorporate the desired
properties into processes and products. When methods and techniques are packaged together,
they form a methodology, which purpose is to promote a certain approach to problem solving
by preselecting the methods and techniques to be used. Tools, in turn, are developed to
support the application of methods, techniques and methodologies. Our ultimate goal is to
continue our work by searching other elements to complete our MES development
environment: methods, techniques, methodologies and tools. In our point of view, however,
such heuristics are much more understandable and easy to apply than any particular
technique or methodology. In fact, these heuristics will enable the software designers to
evaluate various techniques, tools and possible technological solutions and apply them when
they are appropriate.
We hope this work may contribute to improve software development quality in this specific
area and, finally, to improve Music teaching-learning as a whole.

References
Flores, L. V.; Viccari, R. M.; Pimenta, M. S. (2000). Extending the Musical Capabilities of a

Multimedia Authoring Environment. In: Brazilian Symposium on Computer Music, 7.,
2000, Curitiba, Brazil. Electronic Proceedings (CD-ROM) of the XX Congresso Nacional
da Sociedade Brasileira de Computação. Curitiba, Brazil: Champagnat.

Gamez, L. (1998). TICESE - Educational Software Ergonomic Compliance Inspection
Technique. M.Sc. thesis. Guimarães, Portugal: Universidade do Minho. Also available
through HTTP at www.labiutil.inf.ufsc.br/estilo/Ticese.htm (In portuguese).

Ghezzi, C. et al. (1991). Fundamentals of Software Engineering. Englewood Cliffs, New
Jersey: Prentice-Hall.

Krüger, S. E.; Fritsch, E. F.; Flores, L. V.; Grandi, R. H.; Santos, T. R.; Hentschke, L.;
Viccari, R. M. (1999). Developing a Software for Music Education: An Interdisciplinary
Project. In: Brazilian Symposium on Computer Music, 6., 1999, Rio de Janeiro.
Proceedings of the XIX Congresso Nacional da Sociedade Brasileira de Computação, v.3.
Rio de Janeiro: EntreLugar. p.251-264.

Krüger, S. E. (2000). Development, Testing and Proposal of a Music Education Software
Evaluation Script. M.Sc. thesis. Porto Alegre, Brazil: Programa de Pós-Graduação em
Música / UFRGS. (In portuguese).

Nemetz, F.; Winckler M. A. A.; Lima, J. V. (1997). Evaluating Evaluation Methods for
Hypermedia Applications. Short Paper. In: Electronic Proceedings (CD-ROM) of ED-
MEDIA & ED-TELECOM. Calgary, CA.

Nielsen, J. & Mack, R. L. (eds) (1994). Usability Inspection Methods. New York: John Wiley
& Sons.

Nielsen, Jakob (1997). Heuristic Evaluation. Available through HTTP at
www.useit.com/papers/heuristic/ (last accessed in Jan/1997).

Sommerville, I. (1982). Software Engineering. London: Addison-Wesley.
Swanwick, K. (1979). A Basis for Music Education. London: Routledge.
Valiati, E. R. A.; Levacov, M.; Lima, J. V.; Pimenta, M. S. (2000). Guia-GEPESE: User

Interface Guidelines for Educational Software. In: Electronic Proceedings of the II
Simposio Internacional de Informática Educativa - SIIE’2000, Puertollano (Ciudad Real),
Spain: November.

Valiati, E. R. A. (2000). Guidelines for the Development of Interfaces with Usability in
Informative Hypertext/Hypermedia Educational Software. M.Sc. thesis. Porto Alegre,
Brazil: Programa de Pós-Graduação em Computação / UFRGS. (In portuguese).

Winckler, M. A. A.; Nemetz, F.; Lima, J. V. (1998). Case Study in Applying the Heuristic
Evaluation Method to a Multidisciplinary Project. In: IHC’98, I Workshop of Human
Factors in Computer Systems, 1998, Maringá, Brazil. Proceedings... Maringá, Brazil. (In
portuguese).

Winckler, M. A. A.; Nemetz, F.; Lima, J. V. (2000). Learner-Computer Interaction: Interface
Development and Evaluation Methods. In: Digital Technology in Education (presented at
the IV Workshop Informática na Educação, Porto Alegre, Brazil: PGIE/UFRGS,
sep/2000), chapter 1. Porto Alegre, Brazil: Gráfica UFRGS. (In portuguese). (To appear).

