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Abstract. ESSynth, a new method for the synthesis of wave sound patterns is
presented. We take advantage of the Evolutionary Systems theory to develop
an approach that uses a set of wave patterns as ”target” to embed variations
in another set of waveform called “population”. This paper covers how the
wave patterns are treated as genetic codes, their fitness evaluation
methodology and how the genetic operations, such as crossover and mutation,
are used to produce new waveforms.

Resumo.ESSynth é um novo método para síntese de padrões de forma de
onda. A partir da teoria de Sistemas Evolutivos, desenvolvemos uma
abordagem que utiliza um conjunto de padrões de forma de ondas como
“objetivo” para produzir variações em outro conjunto de forma de ondas
denominado de “população”. Este trabalho apresenta como as formas de
ondas são tratadas como código genético, a avaliação de seu fitness e as
operações genéticas de cruzamento e mutação utilizadas para gerar novas
formas de onda.

1. Introduction
Evolutionary Computation is being increasingly used in Computer Graphics to create
scenes and animations (Foley, 1996). In these applications the rules are learned by the
system through its interaction with the user (Fogel,1995). We used this property to
generate sound pattern variants. We already studied other applications for interactive
composition (Manzolli et all, 1999), using MIDI data to control music events with a
heuristic approach (Moroni et all, 2000).

From an algorithmic point of view, ESSynth can be described as a man-machine process
that handles a set of rules to generate sound material. The main goal is to formulate a
robust mathematical model for measuring waveform similarities and then defining
genetic operations such as crossover and mutation to generate interesting sound
transformations. By controlling the waveform target as well as the initial waveform
population the user is able to obtain well-organized sounds or, at a higher level, to
perform music composition. Such process can be understood as the next evolutionary
step in the paradigm for musical composition. In each generation, the best waveform is
sent to a sound output (a wavetable engine). ESSynth is an excellent tool for real-time



synthesis where the user can manipulate the Target set as well as the initial population in
order to get a musically significant sequence of waveforms and consequently new
sounds. An external controller device may be linked to the ESSynth algorithm in order
to control the production of sound patterns in real-time. ESSynth can be seen as an
experimental environment for sound synthesis. Our method is a kind of macro-structural
synthesis so that the Fourier partials are treated in batches. From the operational point of
view, it might be seen like carving tools that sculpt the set of waveforms.

In the following sections we present the method, its mathematical formulation and
experimental results. This paper does not include the concepts of Evolutionary
Computation that can be found in previous publications  (Manzolli et all, 1999; Moroni
et all 2000).

2. Evolutionary Manipulation of Waveforms
The ESSynth method can be described as a man-machine interaction cycle. First, the
user specifies a set of target waveforms. It is important to underline that the user is free
to change the target set at any time.  Second, the computer produces generations of
waveforms using the target set as the raw material for the fitness evaluation process.
When the user changes the target, the computer generates a new set and so forth. There
are three basic control structures: the population of the n-th generation denoted by B(n)

(the initial generation is denoted by B(0)), the set of target waveforms T and the Fitness
Function ƒƒƒƒ. The fitness function is used to find the best waveform w* of each generation
B(n). The w* is defined as the most similar or, in mathematical terms, closest waveform
B(n)  to the set T, measured by a distance function (see the appendix for a definition). In
each generation the best waveform w* is sent to a buffer and is played as a periodically
scanned wavetable.
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The waveforms are normalized as floating-point arrays of 1024 values (or points)
defined in the real interval [-1,1]. The user always defines the T set and optionally the
B(0) , which is otherwise randomly generated. When the user changes the T, the system
reacts in either of two ways depending upon its previous state: B(n) is kept unchanged
(as the initial B(0)  ) or a new B(0) is randomly generated/user defined. The first situation
produces a mutation in the waveform generation, but the overall characteristics of the



sound pattern are kept unchanged. In the second case, the inputs will start a new
generation of variant waveforms that will create new generations of sound patterns. The
overlap-and-add technique is used to interlace the sequence of best waveform of each
generation w(*,i), in order to obtain a smooth audio output. To do so, a Hanning window
is applied to each w(*,i). The interlacing is done so that the amplitude doesn’t change on
the overlapped regions, as shown in figure 2.
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3. Crossover, Mutation and Fitness Evaluation
Waveform variants are produced by applying genetic operations such as crossover and
mutation in the B(n) population. ESSynth dynamically generates waveform sequences.
Similar to the biologic evolution that produces diversity in Nature, it creates and
manipulates a complex generation of sound material in real-time. In statistical terms the
crossover increases the waveform co-variance and the mutation produces random
variations in the population. These two operations are defined below.

3.1 Crossover
Similar to the genetic code of living organisms reproduced by meiosis, the crossover
operation mixes the waveform codes of population B(n). In order to get better-fitted
individuals, ESSynth crosses population B(n) with the elements of the T set. This
operation performs a natural selection in the domain of waveforms. As the user can
interfere at any time, it would be more accurate to say that ESSynth uses a driven
genetic selection.

In order to avoid glitch noise due to the crossover process, a convex combination and a
Hanning window are applied to smooth the S(n,i) waveform segment edges.
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3.2 Mutation
In living organisms mutation implies a modification, usually due to external factors. It
might affect individual phenotypes. This concept was used for our waveform mutation
operation. We defined a mutation parameter b in the real interval  [0,1] to quantify the
mutation strength. When b is close to 0 the mutations are  non-existent; for b close to 1
the mutations are strong. This operation will add high frequency spectral components to
the population of waveforms.

3.3 Fitness Evaluation
In the process of genetic improvement, it is necessary to measure which individuals are
better fitted to survive. In Nature, an adverse environement selects these individuals. In
the waveforms world this can be accomplished by a function that measures the distance
between an n-th generation population set B(n) and the target set T. Therefore it is
necessary to have a function to measure the distance between two sets (population and
target) not necessarily having the same number of elements (waveforms). In
mathematics, this is called Hausdorff  Distance. This is well suited for distance
measurement between  sets of points in a N-dimensional real space. In our case, N =
1024.

4. Conclusion and Results
A new methodology for sound generation was developed. Its mathematical model was
established, constraining the sound variants in a coherent domain. ESSynth features
include the use of a target set of waveforms, a fitness criterion using Hausdorff distance,
an evolutionary process based on crossover and mutation operations.

ESSynth Table of Parameters
Index Population Description Frequency distribution

(Hz)
Number of
Individuals

Comments

01 Target set / harmonically distributed sine waves 100, 200, 300, … 2000 20 10% mutation
02 Population set / randomly distributed sine waves From 180 to 16000 25 100 interactions



5. Appendix: Mathematical Model
An auxiliary metric, or distance function is firstly defined. This mathematical model
considers waveforms as vectors in a real vector space W =ℜ1024

 , i.e. each vector in the
space has 1024 components (points). Given two vectors v and w in W, we define the
usual Euclidian Metric between them:

d2(w, v) = (Σi=1,...,1024 (wi – vi)2)1/2   (1)

As it is known, this metric induces the norm: w = (Σi=1...1024 (wi)2)1/2  Since we are
considering the vectors as waveforms, this norm gives the total energy of the resultant
sound. We arbitrarily opted to use the Euclidian metric, although other metrics might be
tried and used as well.We are now ready to define the distance function between two
sets. Let T = {t(1)

, t(2)
,.., t(L)} to be the Target Waveform Set and B(n) = {w(n,1)

, w(n,2)
,..,

w(n,M)} the set of the n-th generation of the waveform population. Since these are sub-
sets of W, we can define the distance between them as follows:

d(T, B(n)) = min {d2(t(j), w(k))}       (2)

where:  j = 1, … , Lk = 1, … , M

L is the number waveforms in the target T.

M is the number of waveforms in the n-th generation of the population B(n).

The measure (2) is called the “Hausdorff Distance” between two sets. As pointed above,
T and B(n) are finite sets, therefore the minimum in Eq. (2) is given by at least one vector
in B(n), which we denote as w(n,*). This vector is the best waveform in the n-th
generation of B(n) which means the closest waveform in population to the given target
set T, that is using the metric defined in Eq. (2). Therefore, the Fitness Function of the
n-th generation ƒƒƒƒ: T x B(n)  B(n) is

ƒƒƒƒ (T, B(n)) = w∗∗∗∗(n)             (3)

where T is the target set, B(n) is the n-th generation population, w∗(n) is the best
waveform.

5.1 Crossover Operation:

Starting with a Crossover Vector described as αααα = [α1, α2, … αM] where 0 ≤ αi ≤ 1
chosen by the user, it is possible to define some sort of continuous waveform crossover.
The best waveform w(n,*) of the n-th generation is used as, the Parent Waveform  w(n,*) =
(s1, s2, s3,...s1024) in B(n)  and any  other  waveform in B(n)  is  denoted by w(n,i)      where
0 ≤≤≤≤ i ≤≤≤≤ M.
The following steps define the crossover operation in the n-th generation of the
population:

1. Generate random integers in the interval [1,1024].



2. Take two of these integers as k1
(n) and k2

(n), where k1
(n) < k2

(n).

3. Select the segment of the waveform w(n,*) defined by k1 and k2 as S(n,*) = (sk1, ... ,
sk2).

4. Combine the waveform segment S(n,*)
 with the correspondent segment of the

waveform Si
(n,i) in B(n)

5. Apply a Hanning Window H(Si
(n,*) )

6. Combine the windowed segment with the equivalent segment S(n,i) of B(n).

 S(n+1,i) = αi  . H(Si
(n,*) ) + ( 1 – αi   ) . S(n,i)(4)

where S(n+1,i) = (s’k1,..,s’k2).is the new segment.

The crossover operation is the replacement of each S(n+1, i) in the original waveform
making w(n+1,i) = (s1, s2,..,s’k1..s’k2,..s1024).

Repeat steps (4) and (5) for all waveform w(n,i) in B(n), so that w(n,i) ≠ w(n,*).

Obs: A Hanning window is  applied in steps (5) and (6) a also a convex combination to
fade the borders of the waveform segment S(n,i).

5.2 Mutation Operation

This operation starts with the definition of a Mutation Coefficient 0≤ b ≤ 1 that fixes the
amount of disturbance applied on B(n). Since the waveforms belong to W = ℜ1024, a
1024 points  Mutation Vector   ββββ   is randomly    generated  in the  disturbance interval
[1-b, 1]. The Mutation Operation is defined on the n-th generation by the following
steps:

1. Create the Mutation Vector β = β = β = β = [β1, β2, β3...β1024],    where each βj belongs to the
disturbance interval  [1-b, 1].

2. On the elements of B(n) = {w(1,n)
, w(2,n)

,..., w(M,n)} apply the operation of
disturbance:

w(j, n+1) = w(j,n).ββββ (5)(5)(5)(5)

Repeat the steps (1) and (2) for every next generation.
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