
On- line Additive Synthesis by Interfacing
SOM- A to Java Sound TM

Aluizio Arcela & Rodolfo Bezerra Batista
University of Brasilia

Computer Science Dept.
{arcela, rbb}@cic.unb.br

Abstract

It's described a new approach for the SOM- A sound
generating system which has new features, including an
editing tool for assisted musical composition, a
graphical interface for visualizing orthogonal timbres,
an instrument analyser capable of displaying the
envelope of every spectral component, a normalizer
device for scaling automatically the amplitude to fit
exactly a predefined range, and some realtime sound
rendering facilities. Once SOM- A is now implemented as
a public set of Java classes, populations of additive
synthesis objects can be defined inside hyper
documents, virtual reality worlds, as well as in general
purpose Internet programs whether applets or local
applications. In order to provide an effective means for
instant audition to the user, the Java Sound API has been
added to the SOM- A signal synthesis domain as its
sound rendering unit.

INTRODUCING THE NEW SOM-A

Since 1986, when it was created, the SOM- A3 language has been
submited to a number of implementations, starting with that in
LISP9,10 which was entirely inspired on the topology of the
algorithmic instruments defined by the time- trees 2,4. Thereafter, C
and C++ implementations 6,7 for both Unix and DOS platforms have
been done, mainly because a better computing performance was
needed for additive orchestras having more than one thousand
harmonic units. Now, as a result of such continuous work of
implementation, an approach supported by the Java language is
presented here which extends significantly the SOM- A's musical
action space. The most meaningful difference between the

implementation in Java to the old ones 5 is that new SOM- A, besides
interpreting musical scores with additive instruments exactly in the
same way, it serves as a basic API for the development of programs
for sound synthesis as well as for musical composition. A SOM- A
object is an encapsulation of methods related to additive synthesis,
PCM sample generation, realtime MIDI message posting, audio
rendering, and sound storage if desired. The data living inside an
object is basically a spectral chart. Therefore, when a SOM- A object
is created inside a program, one has the capability of additive
synthesis for the production of sound samples on the fly, without
using any sound file at all in the data transmission from the
computer to the audio device, whether in a local or network
application. The final audition of the PCM signal then generated is
now possible in the same instance of the synthesis process thanks
to a beta- version sound programming interface —called Java Sound
— that was released by Sun Microsystems, Inc. a couple of months
ago 12 for general purpose sound applications. When the computing
power is not enough to produce the realtime PCM additive synthesis
required by the chart, the Java Sound's MIDI direct player can be
used as an alternate realtime audio rendering in place of the actual
additive production. In Java Sound, a software - based MIDI engine is
available so that, even if the user has no MIDI device connected to
his computer but only D/A converters, he will get a good- quality
audio signal from such an engine in despite of the unavoidable loss
in the timbre information. However, if sinusoidal midibanks are
defined, it is possible to group a set of concurrent messages so as to
produce a satisfactory MIDI approximation for those additive
instruments having less than 32 partials 8.

1.1 The Object SOM- A

JSOM- A is an API defined by a set of four packages covering all
classes needed for building musical application programs where
additive synthesis is required. Because SOM- A is a concise sound
synthesis language 1,8 having just 5 commands and its additive
synthesis capability is able to handle harmonic spaces of any size,
the use of SOM- A objects inside musical and other sound systems
can be very profitable, specially in on- line sound processing and
musical services where a considerable economy in the required
amount of transmited data will take place. The ideal situation for
SOM- A is reached when its functionality can include the premise
that no sound file needs to be generated but everything is produced
in realtime, whether as a true sample - by- sample interpretation or

as a MIDI synthesis approximation. The idea behind a SOM- A object
can be ilustrated by the equation: score = sound . That is, from the
program's point of view there is no difference between the sound
representation and the sound itself.

1.1.1 The Runtime System (Package I: br.unb.cic.SOM_A)

Classes
EXE Holds the notes of a SOM- A chart.

INS
Holds instruments used by a Som_Achart
object.

JSom_A Interface
Note Defines a single note inside a SOM_A chart.

Som_A
Is a command - line interpreter for SOM- A
charts.

Som_AChart
Is a class that holds every parameter found in
a SOM- A chart.

Som_AInterpreter Is responsible for interpreting a SOM- A chart.

1.1.2 Monitoring the Synthesis Process (Package II:
br.unb.cic.SOM_A.monitor)

GUI's frames for displaying some spectral behaviors along the
synthesis process, as waveform, envelopes, and shapes for
orthogonal timbres.

Classes
Orthogonal Is an AWT component that displays an orthogonal

composition of an Orthogonal SOM_A Instrument.
Envelope Is an AWT component that displays the shape of uH

envelopes.
Waveform Is an AWT component that displays a RAW File's

waveform.

1.1.3 The SOM- A Interpreter (Package III:
br.unb.cic.SOM_A.interpreter)

PCM and MIDI sound generation for interpreting a SOM- A chart is
defined inside this package. PCM samples constitutes the usual
desired result whereas the MIDI synthesis plays an auxiliary
function either in the preview for timbres and in rendering the
overall signal when the sampled sound interpretatiion is not able to
produce a realtime output.

Classes
MIDIInterpreter Is responsible for finding a MIDI approximation

for the additive synthesis required by the chart.

PCMInterpreter Is responsible for rendering a Som- A chart and
generating byte samples representing 16- bit
stereo samples.

1.1.4 SOM- A Fundamental Devices (Package IV:
br.unb.cic.SOM_A.synth)

The fundamental algorithms 5, that is, the H- unit, the instrument
and its small parts, i.e., the oscillator and the envelope generator,
are all implemented in this package.

Classes
CircuitAdapter Provides an interface for adapting circuits that

cascade their clock.
Envelope Defines an envelope generator whose value is used in

the Oscillator.
H_Unit Is the minimum musical instrument implementation.
Instrument Is the minimum additive musical instrument

implementa tion.
LinTable Provides a look- up table that interpolates values

between indexes.
LookUpTable Is the root all look- up tables used inside some

circuits.
Oscillator Defines an oscillator object that generates a sin

flavored waveform with defined frequency, envelope
generator and sampling rate.

SinTable Provides sin(x) function values throught a look- up
table and interpolation.

 ABOUT JAVA SOUND

Java Sound 12,13 is a set of classes having support for both digital
audio streaming and MIDI synthesis. There are two major modules
of functionality which are provided in separate packages:
javax.media.sound.sampled used for capture, mixing, and
playback of sampled audio, and javax.media.sound.midi for
MIDI synthesis, sequencing, and event transport.

2.1 Sampled Audio

The Audio Out Control Device is a device used for rendering
sampled audio. It supports the generation of audio output channels
for both pull and the push data transpor t mechanisms. The sound
to be rendered need not to be a file. Data structures inside the
program which carry sound samples out can be moved to this
output device at a speed according to the user - supplied sampling
rate. Basically, this section of Java Sound is a brigde conecting the
samples produced by the program to the D/A conveters in a very
effective way.

2.2 MIDI

Discrete MIDI messages must be sent to the Direct Player channel
whereas MIDI files must be sent to the Sequence channel. The MIDI
Out Control Device is a true MIDI synthesizer which generates
sound and provides methods for manipulating soundbanks and
instruments. In addition, a synthesizer may support a set of global
non- MIDI controls such as gain and pan. Finally, it provides access
to a set of MIDI channels through which sound is actually produced.

MIDI channels support methods representing the common MIDI
voice messages such as "note on" and "control change."

JOINING SOM-A TO JAVA SOUND

An application derived from the association of SOM- A to Java
Sound is described below which has many features, including an
editing tool for assisted musical composition, a graphical interface
for visualizing orthogonal timbres, an instrument analyser capable
of displaying the envelope of every spectral component, a
normalizer device for scaling automatically the amplitude to fit
exactly a predefined range, and some realtime sound rendering
facilities. The figure below shows the conection between SOM- A and
Java Sound.

3.1 Spectral Chart

A text file having two section: one for the additive orchestra and the
other for the score. Usually this file is to be read and interpreted by
the SOM- A main loop in order to produce sound samples to be
played directly by the audio device or stored in a digital sound file.
However, this input file may be changed in many ways: (1) the user
may edit the file, (2) the parameter setup (see below) has been
changed by the user action on the graphical interface, (3) SOM- A
runtime system detected overflow, that is, the maximum value of
the overall waveform is greatest than the maximum number that can
be represented by the length in bytes of the sample. Is this case,
SOM- A changes de norm parameter in the VAL command.

3.2 Parser
The functional unit responsible for checking the spectral chart
syntax and for translating the LISP- like syntax of SOM- A charts into
a form more suitable for reading in Java. An output of numbered
errors is provided in case of non well formed charts.

3.3 Digital Sound File
If required, as a new segment of the signal is computed it is
immediatly appended to the amount of samples in the binary file.
Almost all common digital sound formats are available, as aiff, wav,
au, etc..

3.4 Timbre Viewer
It is a very useful device for choosing timbres by hearing their
spectral quality combined to the appreciation if their visual
representation. Its main application seems to be in musical

composition as a very large number of additive instruments is
available in spectral charts computed by the time- trees. These
computed instruments may be extracted from their native chart to
figure out in another one which must be edited by the user. If
necessary, the H- units can have their envelopes changed directly
from a mouse action on the breakpoints of the envelope's graphical
representation. Below, some orthogonal timbres selected from
different charts are shown.

3.5 Instrument Analyser
For a selected instrument, all of its H- unit parameters are
displayed, being the frequency order and the inicital phase angle
numerically displayed while the envelope is graphically represented.
At any time the instrument may be requested by the user to produce

a sound at a particular base frequency for a particular duration.
Sub- instruments 1 can be also enabled to sound.

3.6 Editor
Capable of building a complete chart by copying selected
instruments from different charts as well as score segments from a
spectral sequence database. Very meaningful results can be
obtained and many musical ideas may be implemented in a very
short work time. Results are possible to be heard and reedited.

3.7 Normalizer and Rewritter Unit
Capable of adjusting automatically the norm parameter of the VAL
command after running all the chart in order to find out the amount
of overflow so as to determine the normalization factor. In addition,
the Java Sound tempo control (see below) may become a feedback to
the normalizer for automatic changing in the VAL tempo parameter.

3.8 Parameter Setup
All the VAL parameters (VAL t 0 t 1 F A T N L) namely, starting time,
final time, tempo, transposition, norm, and envelope length can all
be changed by the user directly on the screen.

3.9 Configuration Tool

A signal produced by SOM- A is normally an interleaved sequence of
samples due to the intrisic orthostereophony concept inherited
from the time- trees 2. But the number of bits in each sample may be
defined at will by this tool. In addition, the sound file format and
the file system paths for both input chart and output signal can be
specified and stored for a subsequent use.

3.10 Waveform Display
If desired, the waveform representation can be plotted on the screen
whenever a new segment of the signal is computed. The figure
below shows an array of four frames, namely the VAL parameter
setup, the instrument analyser, the orthogonal timbre, and the
waveform.

3.11 MIDI Previewer
For large additive orchestras having hundreds of spectral
components, it's very difficult to get realtime synthesis, specially
with small computers. In these cases, a real time MIDI rendering is
provided for helping the user on how some parameters will affect
the signal. For example, tempo, pitch, and intensity can all be
adjusted to a disired value before the actual additive processing
begins. The same is not true for the timbre, for if the user remains
with the default midibank general midi instruments will be
employed. However, if another midibank is created whose
instruments are all sinusoidal, it is possible to obtain a satisfactory
approximation for instruments having no more than 32 H- units.

CONCLUSION

A new additive synthesis API was briefly presented which can be
used for designing and building programs where realtime
generation of high quality musical sounds is required. The
implementation in Java represents a very important step in the
development, application, and diffusion of SOM- A, mainly because
the concept introduced here for defining a SOM- A object means
that clonable additive sound automata are available to be used by
computer music programmers.

REFERENCES

Arcela, A, (1998). "Fundamentos de Computação Musical", Anais da
VI Escola de Informática da SBC Regional Sul, Curitiba (also in
http: / /www.cic.unb.br / t u tores / fc m / fc m.html).

Arcela, A, (1996). "As árvores de tempos", On- line publishing:
http: / /www.lpe.cic.unb.br / teoria / teoria.html, Brasília.

Arcela, A., (1994)."A linguagem SOM- A para síntese aditiva",
Proceedings of the First Brazilian Symposium on Computer
Music", Caxambu, MG.

Arcela, A, (1986). "Time- trees: the inner organization of intervals",
Proceedings of the International Computer Music Conference,
The Hague.

Castro, R.R.F., (1998). "Primeira implementação de SOM- A em Java",
Technical Report, CNPq/RHAE 610.069 /96 - 9, Projeto W3CIC,
Brasília.

Castro, R.R.F., (1994). "Implementação de SOM- A em Borland C++
para o ambiente MS- Windows", Technical Report LPE- 9402,
University of Brasilia.

Meireles, A., Gioia, O., Castro, R., (1993). "SOM- A em C para Sun
SparcStation, Technical Report LPE- 9303, University of Brasilia.

Miranda, E. R., (1998). Computer Sound Synthesis for the Electronic
Musician, Oxford: Focal Press.

Nogueira Filho, V., (1998). "Síntese aditiva modular - - uma máquina
espectral programável", MSc. Dissertation, University of Brasilia.

Ramalho, G.L., (1991). "SOM- A em Sun Common LISP para o
ambiente OpenWindows", Technical Report LPE- 9105, University
of Brasilia.

Sun Microsystems, Inc., (1998). JavaSound API: A Technical
Overview,
http: / / j ava.sun.com:8081 / javaone / j avaone98 / ses sions /T601

Sun Microsystems, Inc., (1999). JavaSound API Specification, 10
March. http: / / j ava.sun.com:8081 / p rod ucts / j ava -
media / sound / f o rDevelopers / javasound085 / index.html

