
GeNotator : An Environment for Exploring the
Application of Evolutionary Techniques in

Computer Assisted Composition

Kurt Thywissen
Cacafoniq (www.cacafoniq.com)

kurtt@emu.com

Abstract

A computer assisted composition tool for investigating the
application of evolutionary techniques in the composition
of music is presented. The nature of such an application is
examined in terms of defining the possible mechanisms
that provide a means for automated creativity. These
mechanisms take inspiration from processes found in
Darwinian based evolution theory, genetic algorithm theory
and similar aesthetically based uses of a genetic search
heuristic in the visual arts. A formal model of “musical
evolution” is proposed, with particular emphasis placed on
the ways in which a genetic algorithm can be used to
effectively manipulate a variety of compositional structures
within a hierarchical and generative grammar - based model
of musical composition. The result is a prototype Windows
MIDI application called GeNotator that allows composers to
experiment with a range of musical structures by
interactively “evolving” them and do so through a familiar
and comprehensive graphical user interface.

1 INTRODUCTION

Composing music is a creative process, and like any creative process, it
can be described in terms of an aesthetic search through the space of
possible structures that satisfy the requirements of that process: in our
case, creating interesting music. Compositions tend to exhibit varying
degrees of structure, where the composer labours by crafting and
evolving initial ideas into satisfying end products. Richard Dawkins, in
The Blind Watchmaker [Dawkins, 1986], describes lucidly how objects
of apparent high structure (living organisms) can come about via
evolutionary principles rooted in natural selection. He also extends this
notion to a form of “Universal Darwinism” [Plotkin, 1995] whereby the
creative generation of intellectual ideas themselves derive from such a
process of iterative refinement of competing ideas, or “memes” as he
likes to call them.

The success of employing evolutionary techniques in artistic
endeavours is best exemplified by the work of William Latham and his
Mutator and Form Grow systems for evolving 3D computer sculptures
[Latham et al., 1992]. His results can only be described as
extraordinary, surreal and distinctly organic. Latham observes, “The
machine has given me freedom to explore and create complex ... forms

which previously had not been accessible to me, as they had been
beyond my imagination.”

Inspired by the work of Dawkins and Latham, GeNotator is an attempt
at transferring these evolutionary concepts to the domain of music
making. Its main “evolutionary” mechanism is the Genetic Algorithm
(GA) [Goldberg, 1989], which has proven to be a very effective way of
blindly seeking out acceptable candidate structures from large search
spaces. In GeNotator, the GA is used to guide the composer through
the search space of possible compositions.

GeNotator is currently a Windows9x /NT MIDI application written in
C++ using the pubic domain Maximum MIDI toolkit. Additional
components relating to the World Wide Web are implemented as
ActiveX controls.

2 BACKGROUND

GeNotator is one of several previously reported systems that use so
called “evolutionary” techniques in algorithmic composition [Biles,
1994]. Such techniques have also been used in sound synthesis
applications such as parameter optimization for matching instrument
designs [Horner, 1995]. Common to all of these systems is the Genetic
Algorithm [Goldberg, 1989], the most widely used mechanism in
evolutionary computation. For more on genetic algorithms, the reader
should read Goldberg [Goldberg, 1989] as a good introductory text.

Briefly here, a GA is a probabilistic algorithm that maintains a
population of individuals that encode parameters in the problem
domain, typically for an optimization problem. The GA iteratively
manipulates generations of such populations through the simple
genetic manipulations crossover and mutation . By scoring
chromosomes according to their performance, fitter individuals tend to
eventually dominate a population as superior genetic content is allowed
to evolve over time. In computer music the goal is to evolve
aesthetically pleasing musical structures through interactive subjective
fitness evaluation by users.

When considering a GA implementation the challenge is to find a
representation scheme that maps a chromosome’s makeup to musical
features such that music can be “evolved”. The objective fitness
function is usually re- interpreted as subjective ; the composer’s taste
and judgment instead dictate the relative success rate of competing
musical structures represented by the chromosomes. As Biles [1994]
observes, this is often the “bottleneck” in a GA- based system as GAs
typically operate on relatively large populations of candidate
chromosomes, each of which must be evaluated by the listener. One
way to minimize this population explosion is to concentrate on
defining higher level generative processes and /or structures that are in
some way parametrically controlled; it is then these parameters which
are evolved by the GA. These generative processes thus define
boundaries to the composition form space, within which the GA can
evolve interesting parameter combinations.

This is certainly the case with Latham’s work [1992], where the user is
typically given only 9 items to select between at each iteration of

evolution, yet each of those nine items already exhibit a high degree of
pre- defined structure (as opposed to purely random starting
conditions). The limitation with this approach is that the composer still
needs a degree of analytical skill in deriving these generative
processes / s t ructures in the first place. However, once in place, anyone
can theoretically act as “composer” and evolve music within the
predetermined form space.

There is a second approach to tackling the population bottleneck,
which is to somehow model salient features of the composer’s taste
itself, thus freeing him/her from having to laboriously judge a large
population. One proposed method of doing this is to use a neural
network to try to deduce a pattern of taste, trained by observing past
user judgments [Thywissen, 1993, Biles, 1994]. Another approach is to
assist chromosome fitness evaluation by allowing the user to define
rules that, when satisfied, contribute to the chromosomes fitness score
[Thywissen, 1993].

GeNototor is an example of the former approach in that it’s higher level
generative processes / s t ructures are defined in terms of generative
music gram m ars , not too dissimilar from linguistic grammars
[Chomsky, 1957], a feature that differentiates this work from
previously reported approaches. Much research into music- oriented
grammars exists [Holtzman, 1981], and it is their formal descriptive,
and generative power which is of particular interest here.

Complementing this generative music grammar infrast ructure,
GeNotator adds to the mix its own tailored version of the genetic
algorithm.

3 OVERVIEW

GeNotator is an attempt to define a comprehensive framework for
musical evolution. Figure 1 gives a high level view of its principal
philosophy. In purely abstract terms we can picture a composition as
an amorphous whole of inter - related parts where each plays a minor or
major role in the composition’s overall structure. For example, these
parts may be a melody, a rhythmic structure, harmony, instrumenta tion
or the form of a piece, to name just a few of the musical descriptors
with which we are interested in manipulating. “Blind” composition
involves applying the genetic algorithm to aspects within this
amorphous whole suc h that permuta tions of the composition space can
be evolved.

GENETIC
ALGORITHM

Initial Population

randomly
generated

existing
material

Process of
genet ic

evolut ion

Current
version

COMPOSITION
A m orph ou s wh ole

wh ere aspects can be
selectively targeted

In terms of its place in the tradition of computer assisted composition,
GeNotator is best described as a hybrid - algorithmic composition tool
which, on the surface, resembles any mainstream MIDI- based
compositional GUI environment providing tools such as piano- role and
drum map editing, and an arrangement editor. However, to
complement this is an extended framework, with GA at its heart, for
evolving music.

Before going into detail about this framework, it is worth discussing
briefly how GeNotator distinguishes between two different types of
user /composer.

3.1 “Meta- composer” vs. “Gardener”

GeNotator operates at two distinct interactive levels, which are best
classified in terms of user sophistication: the meta - composer vs. the
gardener (to borrow terminology from Latham). Both, incidentally,
could be the same person. The meta - composer tends to have a more
analytical unders tanding about the form and structure of a
composition and what he/ she wants to achieve, and uses the GA to
assist the creative process by generating and refining ideas.

Contrasted with this is the gardener who escapes from
analytical thought entirely (is, in fact, not permitted to think in terms of
structure definition), and instead only needs to know what he/ she likes.
This is borne from the observation that people tend to be far more
sophisticated in listening than in creating music (“I don’t know
anything about music, but I know what I like”).

Both types of user have differing, and to some extent, complementary
interfaces to a given composition. A typical scenario involves the meta -
composer “publishing” a compositional structure genotype; the
gardener is subsequently a consumer who interactively evolves a
published meta - composition into any number of phenotypes – see
figure 2.

3.2 GeNotator’s Architecture

Figure 3 illustrates the main components in GeNotator. Central to this
architecture is the Genotype Structure Definition (GSD).

Figure 1 - Evolving different aspects of a
composition.

Figure 2 - Meta- composer vs.
gardener.

genotype
structure
definition

phenotype

meta- composer gardener

GeNotato

meta-
composer

gardener
interface

The GSD is a data structure that packages a user defined music
grammar together with an automatically generated genetic description
that maps individual chromosome genes to choice routes in the
grammar. The user specifies this grammar either textually or through a
set of editing windows.

Once defined, the GSD serves as input to the Form Space Manager . This
consists of an interactive genetic algorithm that takes the chromosome
structure of the GSD and allows the user to breed and mutate
phenotype instances of it. These are realized for playback and
auditioning by compiling a MIDI stream using the grammar and the
phenotype gene settings. The user is able to judge and score each on
aesthetic merit and continue to do so iteratively in order to evolve
favored instances.

3.3 GeNotator’s Generative Music Grammar

A user will typically codify the structure of a composition via
GeNotator’s native generative music grammar scripting language. The
syntax of this language resembles a familiar production / rewrite rule
type notation. Aside from the basic constructs of iteration,
concurrency and choice, the grammar has other more musically useful
construct s allowing the composer to describe objects such as scales,
keys, rhythms, phrases and larger compositional structures relating to
a composition’s “form”.

Additionally, the grammar syntax is powerful enough to describe
transformational rules as part of the grammar definition. This is an
attempt to incorporate the linguistic notions of deep structure and
transformational rules as described by Chomsky [Chomsky, 1956].
Simple examples of such transformational rules are: transposition,
retrograde, inversion, key- change, canon and so on. These provide a
very powerful generative way of creating additional variance in the

Textual
specification of
grammar

compilationGUI
structur
e editor Genotype

Structure
Definition

(GSD)

Parse tree of
grammar

Generated
chromosome

direct
manipulation

Form Space Manager

Interactive
Genetic

Algorithm

Gene
pool

database

Selection
GUI

genotype description, and also allow the composer to describe music
that has some sense of temporal evolution.

3.4 Specifying the Grammar through a Graphical User Interface

Up until recently, the grammar had to be specified almost exclusively in
a text - based fashion - which is can prove prohibitive to those not
versed in the fine art of programming. One of the main recent
developments in GeNotator is the provision of an alternate graphical
way of specifying all the available constructs in the grammar.

Figure 4 shows some of the editing windows that are now available for
building scales, keys, chords and so on. Additionally, any given
composition is organized as a project where each component in the
project is typically a rewrite rule in the grammar. Since GeNotator has a
set of familiar sequencer type editors (figure 5), and can import MIDI
files, the result is an integrated environment which helps hide the fact
that the composer is actually constructing a formal grammar of the
composition behind the scenes.

Technically speaking, using the GUI for grammar specification does not
result in the generation a textual description that is then compiled, but
bypasses the compilation stage altogether. By interacting with the
various editing windows the user is manipulating the internal parse
tree representation of the grammar itself, an approach known as
structure editing .

Figure 4 - Various GeNotator editing
windows for constructing a grammar.

GeNotator actually permits the user to mix and match between a text -
based grammar and the graphical approach within the same project.
The GUI components can be seen as an alternative view of the grammar
to that offered by the textual representation, and have the benefit of
being easier to use for non- programmers - an important consideration
if GeNotator is to be adopted by users not versed in programming (see
figure 3).

3.5 From Grammar to Genotype

As mentioned earlier, the GSD consists of a grammar and a generated
chromosome template. The grammar is stored internally as a parse tree
together with an optional textual representa tion that was used to
generate it. The complementary chromosome structure is automatically
generated by a process of searching through the parse tree
representation and introducing a new gene for each choice route
expressed in the grammar. The allele cardinality of the new gene
corresponds to the number of alternatives dictated by the choice route.

Figure 5 - Additional sequencer oriented editing features in GeNotator.

A simple example of this is shown in figure 6 below where one
sequence rewrite rule is resolvable to three different alternate
sequences, and the other one to two. In this instance two genes are
added to the genotype with respective cardinalities three and two.

Since all the major constructs in GeNotator’s grammar syntax suppor t
“choice”, and thus variability, the meta - composer is free to define any
range of variance desired within a composition genotype, from highly
constrained to wildly unpredictable.

4 THE COMPOSITIONAL PROCESS

A typical scenario involves the composer specifying a meta -
composition grammar textually or through the provided editors. A
starting point may be an existing composition imported as a MIDI file,
which the user can then split up into a grammatical structure. Or the
composer may be attempting to formally describe a well- defined
composition grammar for the purposes of proving the validity of
particular ideas in music theory.

Depending on the amount of variance expressed in the grammar, the
user can expect to be able to generate either a small or large variety of
phenotypes from this grammar genotype, the search - space exploration
of which is achieved through the FormSpace Explorer, which is the
subject of the next section.

5 EVOLUTIONARY MECHANISMS

GeNotator has its own “butchered” version of the genetic algorithm to
implement the main evolutionary mechanism. Although considerably
modified, this is in line with recent trends to move away from the
prevailing classical binary model [Michalewicz, 1995].

As Michalewicz observes, “…to solve a nontrivial problem using an
evolution program, we can either transform the problem into a form
appropriate for the genetic algorithm, or we can transform the genetic
algorithm to suit the problem.”

5.1 A Tailored Interactive Genetic Algorithm

GeNotator is very much an example of this philosophy, and for this
reason it is perhaps best to describe it as an evolution program . For
example, although chromosomes are still of fixed length, each gene
does not have to be binary, but may have its own cardinality
independent of other genes. Additionally, it is possible to impose a
probability distribution over the range of values individual genes may
take during mutation to create bias towards a range of values.

BA

B2A3A1 A2

….…. 23

[a]

[b]

[c]

COMP = seq(A, B, A);
A = seq_choice(A1, A2, A3);

B = seq_choice(B1, B2);

Figure 6 - A simple grammar [a] and compiled parse tree
[b], with corresponding genes in chromosome structure
[c].

Another major difference over classical approaches is the provision for
an arbitrary number of parents beyond just two during genetic
crossover.

The user interacts with this modified GA by controlling such factors as
population size, mutation likelihood and designating which parents
partake in breeding. By auditioning and scoring phenotypes, the user
exerts influence on the direction the evolutionary process follows.
Figure 7 opposite shows the user interface component that GeNotator
provides for doing this, called the FormSpace Explorer .

5.2 Navigating Musical FormSpace

As figure 7 illustrates, the user navigates through the form space of a
particular musical grammar by cultivating fit individuals through the
iterative manipulation of individual populations. Individuals are
presented as iconized faces, whose facial expressions indicate their
relative worth. By double clicking on these faces, the user is able to
listen and judge, at any time, the musical instantiation of the grammar
permutation represented by that face. Right clicking on a face allows
the user to score particular individuals, which in turn dictates the
amount of influence these individuals will have on subsequent
generations.

Controls are provided for setting the standard evolutionary parameters
of population size, crossover and mutation probability. A third
parameter, mutation sensitivity, is provided to control how drastic a
gene may mutate over its cardinality range. Finally, a “scratch” area is
provided within which the user can put aside favored individuals.
Notice that the mating pool can contain more than two parents for any
given generation allowing 3, 4 or n parents to generate the next
population.

5.3 The FormSpace Manager (FSM)

The FormSpace Manager (FSM) is where GeNotator’s tailored GA resides
along with other house - keeping facilities such as a gene- pool database
used to maintain and retrieve generations of genetic content.
Additionally, the FSM offers a hierarchic menu interface that permits
users to progressively unlock deeper structural content in a given GSD.

In practice, this means facilitating a way for the user to target
particular aspects of a composition for manipu - lation. GeNotator
achieves this by allowing disjoint sections of a chromosome (known as
schema) to be “frozen”, and thus become dominant from generation to
generation; only those genes that are not dominant are effected by the
evolutionary process. For example, if a user wishes to only evolve a
particular phrase, the hierarchic menu system can be used to track
down which genes contribute to the phrase, and then force all other
genes that do not contribute to it to become dominant.

6 6 GENOTATOR AND THE INTERNET

A current development has been to separate the Form Space Manager
into a stand - alone ActiveX control for integration into html pages.
Once embedded in an html page the control can be automated to
upload published GSDs from any supplied URL address across the
Internet.

The ActiveX control contains the familiar interactive “gardening”
interface found in GeNotator and has enough functionality to compile
and play phenotype versions of the composition assuming there are
compatible MIDI tone generators attached to the hosting PC. Thus we
now have an environment whereby a composer can publish a music
genotype (GSD) on the Internet, and by doing so give it a life of it’s own
beyond the original composition.

An interesting consequence of this is that it provides a way to
“democratize” the compositional process. Third parties, with little or
no music knowledge, can be given the opportunity to develop other
compositional ideas further and solely on the basis of personal taste.
Genotype compositions that are published in this way become
perpetual “works in progress”, and the originating composer is able to
discover with delight or horror the mutated offspring generative from
their original conceptions.

7 CONCLUSIONS AND FUTURE WORK

In so far that GeNotator provides a comprehensive approach to musical
evolution within a hybrid compositional environment, there is much yet
to explore. In terms of musical output, GeNotator can certainly evolve
interesting music, but it is often a matter of balancing good starting
conditions with a degree of form space bounding. The use of generative
music grammars goes some way towards providing a mechanism with
which to do this.

Figure 7 - Interactive navigation through
“Musical FormSpace” with the FormSpace

Explorer.

With the new enhancements to the music grammar and GUI, GeNotator
has reached a point of functional maturity that makes composing with
it relatively straight - forward, and most importantly, enjoyable. It is
hoped the ActiveX control will also help the system reach a wider
audience via the Internet.

Interesting applications beyond being simply a hybrid algorithmic
environment include the prospect of royalty free generative music, or
even the licensing of music genotypes in a particular musical style -
something the advertising, web- content, and games / en ter tainment
industries might find appealing.

Future developments will focus on automated grammar construction.
Currently, the meta - composer still needs a degree of analytical
aptitude in order to capture an interesting genotype structure
definition and define a grammar, and it is perhaps here that initial
enhancements should be focused. One avenue of interest is to provide
automated grammar generation from existing music, or to apply the GA
to the evolution of grammars themselves. GeNotator can currently be
described as an “exploitation” evolutionary system: given an explicit
grammar, it helps the user find interesting phenotypes within the
constraints defined by that grammar. The next step is to provide for
“exploration” evolution, i.e. evolving the grammar itself. Tentative steps
are already being taken in this direction and it is hoped that the
emerging field of genetic programming will provide further clues as to
how this can be achieved in practice.

REFERENCES

[Biles, 1994] John A. Biles, GenJam: A Genetic Algorithm for Generating
Jazz Solos. Proceedings of the 1994 ICMC.

[Chomsky, 1957] Noam Chomsky, Syntactic Structures , 1957.
[Dawkins, 1986] Richard Dawkins, The Blind Watchmaker . Penguin

Books, 1986.
 [Goldberg, 1989] David E. Goldberg, Genetic Algorithms in Search,

Optimization and Machine Learning . Addison Wesley, 1989.
[Holtzman, 1981] S.R. Holtzman, Using Generative Gram mars for Music

Composition . Computer Music Journal 5, no. 1 (1981) pp. 51 - 64.
[Horner, 1995] Andrew Horner, Wavetable Matching Synthesis of

Dynamic Instruments with Genetic Algorithms . Journal of the Audio
Engineering Society, Vol. 43, No. 11, Novemberr 1995.

[Koza, 1992] J. R. Koza, Genetic Program ming - On the Program ming
of Computers by Means of Natural Selection . MIT Press, 1992.

[Latham et al., 1992] William Latham, Stephen Todd. Evolutionary Art
and Computers . Academic Press, 1992.

[Michalewicz, 1996] Zbigniew Michalewicz, Genetic Algorithms + Data
Structures = Evolution Programs . Third edtion, Springer - Verlag,
1996.

[Plotkin, 1995] Henry Plotkin. Darwin Machines and the Nature of
Knowledge. Penguin Books, 1995.

 [Thywissen, 1992] Kurt Thywissen. Evolving Melodies with Mu-
Tonator. M.Sc. programming assignment, Univ. of York, 1992.

[Thywissen, 1993] Kurt Thywissen. GeNotator: An Environment for
Investigating the Application of Genetic Algorithms in Computer
Assisted Composition. Univ. of York M.Sc. thesis, 1993.

[Thywissen, 1997] Kurt A. Thywissen , Evolutionay Based Algorithmic
Composition: A Demonstration of Recent Developments in GeNotator.
Proceedings of the 1997 ICMC.

