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Abstract

This paper reviews past digital waveguide methods for reproducing non-linear
¢reed” excitations as well as introducing a new method incorporating reed dy-
namics. This model is based on a mass-spring-damper system and a non-linear
flow control mechanism. In this way, a more physical system is attained which
provides better approximations to the control parameters of real musical in-
struments. Further, it is shown that this model of the reed can be modified to
represent the lips of a brass player, and the similarities and differences between
these two systems are briefly examined.

1 Introduction

Musical instruments are most clearly distinguished from one another by their transient characteristics,
which in turn are defined by a particular method of excitation. Among wind-blown instruments, for
example, the various air-driven excitation methods distinguish saxophones from trumpets or flutes. In the
context of digital waveguide modeling of musical instruments, highly accurate models of these non-linear
excitation methods have proven difficult to produce. Two effective digital waveguide reed woodwind
excitation methods have previously been presented (Smith 1986) (Cook 1992), though these models lack
the physical control parameters associated with their real world counterparts. A dynamic waveguide
reed model incorporating a mass-spring-damper system and non-linear flow control is presented here.
The modeling of the reed in this way for waveguide applications was previously discussed in (Hirschman
1991) for woodwinds and (Cook 1991b) for brasses, though the flow control mechanisms implemented

were different from that discussed in this paper.

2 Acoustical Aspects of Air-Driven Reed Generators

The acoustical properties of reed generators have been extensively studied (see Fletcher & Rossing 1991
for references). Two distinct types of reed generators exist those in which the reed valve is initially
closed and then blown open (as with a brass player’s lips) and those in which the reed valve is initially
open and then blown closed (as for clarinets and saxophones). In most cases, the reed itself is modeled
as a linear oscillator, and the pressure on the reed is taken equal to the difference in oral cavity and
bore pressures. The position of the reed in turn governs the volume flow through the reed aperture, for
which Bernoulli’s flow equation forms a first approximation. Possible modifications to the flow equation
include terms to compensate for reed channel inertia and the physical motion of the reed surface. Recent
fluid-dynamic studies of flow through a reed aperture have suggested the need to account for viscous
flow (Hirschberg et al. 1990). Non-linearity of the reed stiffness has also been discussed (Gilbert et al.
1990).
In woodwind instruments the reed resonance is normally high compared to the operating frequency
of the reed. A mass-spring system driven at a frequency well below resonance is said to be stiffness
dominated and its displacement amplitude will approach f/k, where k is the spring constant and f is
the applied force. Thus, a common simplification for woodwind instruments has been to neglect the effect
of the mass altogether and to simply model the reed system as a memory-less non-linearity. Assuming
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Figure 1: Steady Flow Through & Pressure Controlled Valve Blown Closed

3 Digital Waveguide Reed Generator Models
3.1 The Pressure Dependent Reflection Coefficient

Meclntyre, L i
yre, Schumacher, & Woodhouse (1983) discussed the time-domain synthesis of clarinet sounds and
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Eq. (3) can then be solved for the reflected bore pressure at the junction, p,

py = plpa)p} + (4

Loplen,
2
Unfortunately, pa is dependent on p; and in order to solve Eq. (4) it is necessary to find an

approximation to pa. In a recursive, discrete-time calculation, it is possible to approximate pa (n) by

pa(n —1) or to caleulate pa(n) using p; (n— 1). Further, current values of either quantity could be

extrapolated from previous values. The approach taken here is to define a new term, pz = Poc — 2112',

which is independent of p;’ and substitute this into Eq. (4) to obtain
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Figure 2: Sample Reflection Coefficient Table

The pressure dependent reflection coefficient is normally implemented using a look-up table, thereby
saving one multiply and one addition per sample. Figure 2 displays a sample reflection coefficient table
that has been used in synthesizing clarinet sounds. This particular table is based on normalized oral
cavity pressure. Values of pz greater than 1.0 correspond to beating of the reed against the mouthpiece
lay and complete reflection of incoming bore pressure. Values of differential pressure less than 1.0
correspond to partial reflection of p;" and partial transmission of poc into the bore.

3.2 The Reed Reflection Polynomial
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Figure 3: Reed/Bore Scattering Junction

The reed reflection polynomial incorporates the concept of a pressure dependent reflection coefficient;

but makes the assumption that pa can be approximated by p}, — pi. The polynomial model is derived
Dby considering the reed/bore junction as shown in Figure 3. The portion of pj reflected back into the
bore is given by pg' - p(pa), while the portion of the oral cavity pressure which is transmitted into the
bore is given by pt,(1 — p(pa))- Then py is given by

py =P — o — 07 plpa)- OF
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Using the above stated approximation for pa and approximatin i
g (0) becomes g p(pa) by a second order polynomial
— ot
Py ™ Poe [Cl (P:—c - plf) + CZ(P:—c - p:)z + C3(pjc ___pg‘):i] . (7)

This reed implementation method has proven efficient and effective for real-time DSP synthesis
Unfqrtunately, the process of determining appropriate polynomial coefficients is rather arbitrary. It i.
possxble to relate the polynomial coefficients to a polynomial approximation of the pressure de );1 d i
reflection coefficient through a matrix transformation (Cook 1991a). cepenaen

3.3 The Dynamic Woodwind Reed Model
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Figure 4: Dynamic Woodwind Reed Model

In cont.rast to the reed models previously discussed all of which ignored the mass of the reed the
dynamu.: reed model seeks to accurately model the motion of the reed and its beating against the
mouthpiece lay. In functioning as a pressure controlled valve, the position of the reed at axgl instant
governs t.he volume flow that is injected at the reed/bore junction. The reed is represented b;, a linear
nllass-sl?rmpg.-damper system wl_lich i‘s acted upon by the difference in oral cavity and bore pressures, as
i ;:Br:c ::r alxlgslg:l :1 . gi,i 1:e:;\’t',xonshxp between applied force and displacement, and the corresponding

dz

2
frt)=mEE + pe v kx> F.(s) = [ms® + us + k] X(s). (8)

Both the oral-cavity and the bore pressures act upon the reed, so that the resultant force on the reed is
F(s)= A-Pa(s) = A [Poc(s) — Do(s)] . Q)

where A is the'app.roximate' surface area of the reed exposed to I’5. A is typically bounded by the width
of the reed at its tip and the distance from the reed tip to the player’s lower lip.
The transfer function that relates reed displacement to applied force is found from Eq. (8) as

X(s) _ 1
F.(s) ~ HE) = ms? +pus+k
1/m
82 4 (u/m) s+ w? (10)

:}'iell;ie- ;Ee:- I:r/msifs the natural frequency gf the mass.-spring system in the absence of damping. Using
B ansform to convert from continuous to discrete time, the following digital transfer function

X(z
(=

~—

(1+2:74 4272
(k+a?m+ap)+ 2k —a?m)z~t + (k+a?m—ap)z?
(1+2:744272)
(mw? + a?m + ap) + 2m (w2 —a?) z=! + (mw? + o?m — ap) 272

= H(z)

o

1y

E”}lllir(;e l;’x is th.e bilinear transform cox'xstsfnt used to control the frequency warping. The displacement
y passing A-pa (n) through this biquad section is subtracted from the reed’s equilibrium position
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erbure spacing. Inelastic beating of the reed is assumed, such that the reed j - .
b & & . 1s 3.4 Modeling a Brass Player’s Lips
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Figure 6: Adir-Driven Lip Model

Figure 6 represents a basic air-driven li
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_ Figure 5: Second Order Reed Filter

Assuming that the Bernoulli flow equation applies to the given situation, the volume flow through

‘the reed aperture is found from
ut) = Al

ZPA(t)] g
A | 2alt) 12
® [ : (12) 4 Results & Future Refinements

where A,(£) = w- () is the time-varying area of the reed apertufe, w is the width of the reed, and p is.

il

 The dynamic w vind
gide iyoozlli:h\:doitli‘:md reed model presented here has been successfully implemented in digital w
‘varying e :‘; 1::111:;;; models :md ?roduces realistic transient and steady-state behaviirsa ';3?1\;:
: . parameters (mass, spring constant, and damping) i ¢ X -
: it 1 i . i s mpin,
. particular, it iy deslr.ed that the reed stiffness be variable over the ¢ !; g) is b:emg ﬂfplored.. In
pg' ) —pp (B 13) currently possible using three look-up tables for the filter coefficient 0::1?99 01 the reed's motion. This is
‘ time-varyi : . cients, though mor i g
Z tlloug‘llf?i;l:iiionhioé' are desired. The brass instrument model has been i%uplenlleexifslinltl ﬂl.eﬂ}&ds for
‘underw r real-time models by Perry R. Cook have previously been demonstrated e atla.b,
‘ rway to implement all models in a real-time environment rated. Current work is

the density of air. ,
Finally, we assume continuity of volume velocity at thé reed/bore junction and calculate the new

traveling wave component of pressure entering the bore as,

u(t) = wy () +uy () =

where Z, = pc/A, is the constant acoustic characteristic impedance of the bore. pp (t) represents
the traveling wave component of pressure entering the bore while prf (t) represents the traveling wave

component of pressure leaving the bore. Solving for p; (t), we have
py () u(t) - Zs + p (t)
2pa(t) 3 pe -+
At (28 L2
- [220]" - £ pr0
b
4.0 - Lot + )
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Abstract

Don Cuco el Guapo is the first Mexican pianist robot, which was designed and
built at the Departament of Microelectronics of the UAP. The project was
based on multidisciplinary participation, where physicists, electronic engineers,
computer scientists, musicians and designers converged.

The musical score recognition sytem was implemented through the following
steps: frame grabbing, image processing, pattern recognition and interpretation
or analysis of scene. The vision system of Don Cuco el Guapo is capable of
reading musical score from a template.

Frame Grabbing

Frame grabbing is the process through which a visual image is taken from the three
dimensional world. The frame grabbing involves different methods in order to reduce the
graphic complexity, increasing the necessary information for object detection and extraction.
These methods consist in the precise definition of the object to be captured, that is, what
form characteristics does our object have so that the camera set up (focal distance, iris
opening -and focus) establishes a correspondence between the object (real image) and the
plane image (digital image).

An ELECTRIM EDC-1000 camera was used for frame grabbing; it's main

characteristics include:

o CCD sensor

« High sensitivity

« Distorsionless image

« Fast response

+ Resolution 192(h)x165(v)

¢ Monochromatic 8 bits

¢ Spectral range 4001000 nm

Focal length was taken at one meter, with a variable iris for different illmination
conditions. The visual information is converted to electric signal by the sensor CCD. When
these signals are sampled and quantized, we obtain a digital image.




