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Abstract

The work we present in this paper is a formalism of a dynamic computational model
in a hierarchy. We are interested in representing musical hierarchies and bindings
of characteristics (such as the mode, measure, tempo, duration, key, etc.) within
them in order to provide the composer a means to verify the consistancy of the piece
during the compositional process. The model transfers any modification from the
composer to the representation in an incremental way, without computing again the
whole hierarchy.

1 Introduction

The complexity of a musical piece can be organized in a hierarchical way based on its temporal structure.
Musical characteristics (such as the mode, measure, tempo, duration, key, etc.) can be defined at any
point of the hierarchy (that is any sub-piece). These characteristics are then bound together according to
the temporal structure and the musical rules imposed by the composer. We are interested in representing
musical hierarchies and bindings of characteristics within them in order to provide the composer a means
to verify the consistancy of the piece during the compositional process.

Our work may be situated between constraints propagation techniques and hierarchical representa-
tions & la Balaban. We are interested in designing the representation and the computation model which
is appropriate to it. From our point of view, a musical piece is an object that is composed of several
dimensions. Classic dimensions are time, frequency, timbre and volume. The variations of the values
in these dimensions are not independent from each other. The result of a musical analysis is exactly
a seb of correlations between variations within a single dimension and between different dimensions. In
order to formalize those correlations, we define several relational operators which are dedicated to specific
dimensions. The set of values in each dimension can then be structured in a hierarchical way using these
operators. Hierarchical way means that the object representing the structure is not always a simple tree,
but a directed acyclic graph (see the notions of shared occurrencies and repetitions of Mira Balaban
(Balaban 1993)). The originality of this work relative to the others based on hierarchical representations
is the addition of a semantics to the hierarchy. This semantics provides a very sound way to represent
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Example: Let P={e;: A=DB.C, eg: C= E|F}. The tree associated with the equational program
Pis:

some correlations in order to verify or apply them. The obvious limit of this representation is that it
does not compute the correlations that are not based on an operational structure. We believe, however,
that there almost always exists a structure underlying every kind of correlations.

Owr initial study concerns the time dimension. Time relational operators have been widely studied
(in particular, the musical concatenation of Mira Balaban (Balaban 1991), relations of Allen (Allen 1983)
and their application to music by Alan Marsden (Marsden 1994)). The two operators concatenation and
superimposition provide a simple model with an acceptable power of expression. We first investigated
the static aspect of the model (see (Barbar, Desainte-Catherine, Miniussi 1993) and (Barbar, Desainte-
Catherine 1992)) in the following way. We first transform a musical equational program defining the
structure of a musical piece into a derivation tree according to an attribute grammar. This derivation
tree is then considered as a data structure which represents the musical hierarchy. Each attribute in the
derivation tree represents a wmusical characteristic and the associated semantics represents the musical
rules binding these characteristics. The evaluation step computes a solution (the values of all character-
istics of the hierarchy), if it exists.

This previous work provides a very sound model but is insufficient in the context of an interactive
compositional environment. A dynamic model is needed. This model must transfer any modification from
the composer to the representation in an incremental way, without computing again the whole hierarchy.

The work we present in this paper is a formalism of a dynamic computational model in a hierarchy.
The data representation is the same than the previous one. Only the computational model has changed.
This model manages modifications (giving a value to a characteristic, changing a value of a character-
istic, modifying the hierarchy itself by substituting one sub-piece by another) and maintain the overall
consistency of the piece. The first two operations necessitate the propagation of the modifications of a
characteristic in any direction in the hierarchy. The last operation implies the management of several
hierarchies at the same time. Our formalism is no longer based on attribute grammars, but on systems
of equations.

In section 2, we present the syntactic aspect of a musical hierarchy. It is represented by an equational .
program which is given with a set of syntactic equations. We give in section 3 the musical systems or the
relations between characteristics attached to nodes of a hierarchy in terms of sets of equations on these
characteristics. We define the solution of a musical system in section 4. An incremental strategy for the

3 Musical Systems

The semantics of a hierarchy is built by a kind of union (called a cartesian union) of the musical systems
of ea§h syntactic equation composing the equational program representing the hierarchy. In what follows,
we will only study the case of the characteristics measure and duration which will be denoted, respectively,
by m and d.

3.1 Musical Systems associated with Syntactic Equations

We introduce the concept of musical systems associated with a syntactic equation with the two following
examples. The reader interested in the formal definition can refer to (Barbar, Desainte-Catherine, Beurivé
1994). We give two examples of musical systems for the characteristics measure.

Example 3.1 Let Sem = {51,52,53,84} be the set of equations sysiems associaled with the syniactic
equation e = A= B .C, where

determination of the solution is given in section 5. The section 6 contains our conclusion. m(B) # &, m(C) #£ ¢, m(A) # e, m(A) = m(B),
’ (51) En(f) # m(C’),m(A) =g, (‘32) TH(A) - m(C),
. m(4), m(B), m(C)) € Domain(m)® A), m(B), m(C D i 3
2 Bquational Program ), m(B), m(C)) (m) (m(A), m(B), m(C)) € Domain(m)

s m(A) =e,m(B) =¢, m(A) = e,m(C) =&,
(53) { (m(A), m{B), m(C)) € Domain(my* (%) { (m(A), m(B), m(C)) € Domain(m)*

The value & denotes a measure that is not constant. The musical meaning of this musical system is the
following:

2.1 Temporal Operators

Let us denote by (¢,d, f,s,v) an event, where ¢ is the beginning time, d the duration, f the pitch, s the:
sound and v the volume of the event. Let ey = (t1,d1, f1,51,v1) and ez = (ta,d1, f2, 52, v2) be two events.
The operators of concatenation, denoted by ., and superimposition, denoted by |, are defined by:

ercn = by b dy = 3 erles = 1y = ta,d1 = da. e When two parts have different measures, the measure of their concalenation is nol constant.

. . e When fwo parts have the same measure m, their concatenation has also the measure m.
2.2 Syntactic Equations
o If @ part A has got « measure m, every subpart of A gets the measure m.
The temporal structure of a piece is defined by the means of syntactic equations whose forms are given

by general syntactic equations. For example, let us define the two syntactic equations that will be used
in this paper: e = A=B.C, ¢ = A=B | C where A, B and C represent musical pieces.
The equation e means that the piece C'is concatenated to the piece B, i.e. it starts exactly when B
ends. The piece A is the concatenation of B and C. The equation e; means that the two pieces B an
G start and end at the same time. The piece A is the superimposition of B and C.

Let us now define a simple sysiem for the measure and the superimposition operation: two paris that
are superimposed have the same measure. The set of systems is reduced to the following equation system:

(55) { m{A) = m(B), m(4) = m(C),
(m(A), m(B), m(C)) € Domain(m)?

Example 3.2 The following musical system for the measure involves also the characteristics duration,

denoted by d. Let Se = {53, 50,510} be the set of equations systems associated with the syntactic equation
e X =Y .Z, where

2.3 Equational Program or Hierarchy

An equational program is a set of syntactic equations. We will only consider equational programs whic¢
can be represented by a tree i.e each symbol of musical piece occurs at most one time in the left hand sid

o Y o alanh
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. m(Y) # m(Z),
;’E(Yy))j iy > o) d((y))<96 el
(58) ) m(x) = m(Y) U ) = mz)

(m(X),m(Y),m(2)) € Domain(m)® (m(X),m(Y),m(2)) € Domain(m)®

m(X% = mE}Z’g
s10 m(X) = m(Z), ‘ \
() { (nS(X),m(Y),m(Z)) € Domain{m)

3.2 Musical Systems associated with Equational Program

We have defined the formal object representing musi}fal sys

isti i hich are those mu
haracteristics. Now, from small pleces W : : .
:njsica.l system which is associated to a whole equational program. Tor this purpo

cartesian union operation which simplifies the final definition.

tems involving syntactic equations and §ets of
sical systems, let us define how to build the
se, we introduce the

Definition 3.3 Let By and B2 be two finite sets of sets. The cartesian union of Ey and Eg 15 defined
e .

by: Byl Bz = {e1 Uesles € Br,e2 € Ea}.

= By = {{a,b},{c}}, then
E le 3.4 Let El = {{1:2)3}){4)5}1{6}}' 2
E)I(aanI; = {{1, 2) 3; ayb}? {1)2:3)‘7}) {4x 5,(1)6}, {4:51C}1 {67 a, b}) {6’ C}}

We denote by e any syntactic equation in P and by S, the set of

Let be P an equational proghett Let be T a set of characteristics. Then, the set of equations systems

equations systems associated with e. _
associated with the equational program P is:

S = EFJ(L'H Se.‘r)

eeP vell
ated with the equation e for the characteristics 7.

Example 3.5 Let P be the equational program {e1 : A= B.C, e3: C=E|F}. Then,we have:

where s, i3 the musical system associ

o the musical systems associated with the equations e; and ey are:

. ) "y
-8 = {s1, 82,53, 84}, the cquation syslems given i

o (6} = (d(A) = d(B) + d(C), d(A) 2 0,d(B) > 0,d(0) 2 0 } -
—sehm = {s¢} = {m(C) = m(E), m(C) = m(F), (m(C),m(E),m(F)) € Domain(m

wserg = {57} = {d(C) = d(B),d(C) = &(F),d(C) 2 0,d(E) > 0,d(F) = 0}

~Sel’: Seym B Sed = {51 U 85,59 U 83, 53 U s5,84 U 35}

=S¢y = Seg,m b’J Seq,d = {56 u 57}

the musical systems associaled with the program P are:

5= E—J ( LJrj Sey) = Sey L-H 5o, = {51 Us5,32Us5,53U55,s4U55} L—}j {ss U sz}

e€{e1 02} vE{m,d}

S = {51,5,6,7 » 52,5,6,7 s 53,567 54,5,6,7}

where for all i, ], B0 osijeg=siUsjUsk U s, As ezample:

; 3
A # e, m(4) = m(B), m(4) = m(C), (m(A), m(B),m(C)) € Domain(m)
T e hey ) 0,4(B) 2 0,d() >0 e
82,867 = Y m(C) = m(E),m(C) = m(F), (m(C), m(E), m(F)) € Domain{m)
HO) = d(B),d(C) = d(F), () 2 0, d(B) > 0,d(1) 2 0
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4 Musical Equational Program

A musical equational program (MEP) is the main object of our model. It represents the state of the
composing process at one time, that is:

o the state of the hierarchy, which is represented by a set of syntactic equations,
e the state of the musical system which is associated to the current hierarchy,

o the set of all the assignments of some parts characteristics that have either been given by the
composer or either been computed from the musical system.

Definition 4.1 A musical assignment is an equation of the form c(A) = v where ¢ is a characteristic
symbol, A is a piece symbol and v a value in the domain of c.

Example 4.2 Let be the following MEP : < {e; : A = B.C, eg : C = E|F} {s.,,5¢,},{m(4) =
3/4,d(E) = 10} >, where 5., and s., are the musical systems of ezample 3.5.

4.1 Solutions of musical equational systems

Intuitively, the solution of a MEP is the intersection of non empty solutions of all musical systems
associated with the equational program.

Definition 4.3 Let < P,S,G = be « MEP. Let sol(s) be the set of all the solutions of a system s € S,
each solution being given by a set of assignments of the form ¢(A) = v where ¢ is a characteristic and A is a
symbol representing musical piece. Let be solg(s) = {0 € sol(s)/G C o} and solg(S) = U solg(s). The
€S
solution of < P, S,G = is the set of assignments ﬂ © o, So we will write < P, S,G > ﬂ 0.
o€solg(S) ag€salg(S)
The solution of < P, S, G » is the empty set if G does not constitute a part of some solution of S. In
that case, the system < P, S, G > is said to be invalid (or not consistant).

Example 4.4 Let us consider the MEP < P, S,G >, where S is given in ezample 3.5 and G = {m(A) =
3/4,d(E) = 10}. Then, we have:

sola(s2,5,6,7) = {{m(A) = m(B) = m(C) = m(E) = m(F) = 3/4,d(E) = d(F) = d(B) = 10,d(A) =
d4,d(C) = dc}/da — do = 10}, (it contains an infinite number of solutions)

solg(s1,5,6,7) = solg(sss,67) = solg(sas67) = 0.
Thus, the set of all solutions of S is solq(S) = U solg(s) = solg(s2,5,6,7)
s€s
and the solution of < P,S,G > is ﬂ o= ﬂ o=
o€solg(S) g€sola(s2,s,6,7)

{m(4) = m(B) = m(C) = m(E) = m(F) = 3/4,d(E) = d(F) = d(B) = 10}.

- Definition 4.5 A MEP < P,S,G » is saturated if < P,5,G > F G.

Example 4.6 The MEP < P,S,G » given in the previous ezample is not saturated because the assign-

ments m(B) = m(C) = m(E) = m(F) = 3/4,d(F) = d(B) = 10 do not belong to G. On the contrary,

< P, S,GU{m(B) = m(C) =m(E) = m(F) = 3/4,d(F) = d(B) = 10} > is saturated.

We note that here we calculate the solutions of the musical system associated with the whole hierarchy (or

-tree) with respect to all assignments given by the composer. An interesting way for the determination of

the solutions is the elimination of all invalid musical systems each time the composer gives an assignment.
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5 The Incremental Strategy

The incremental evaluation on 2 musical equational program is the computation of a solution step by
step. It consists of the computation of assignments which are deduced by the musical systems with
initial assignments which are given by the composer. Let < P,S,G > bea saturated musical equational
program. A slight modification of < P,5,G > implies modification of the solution. The incremental
strategy consists of the computation of the new solution by modifying the old one without computing
again the whole solution. Now, we give the principle -of the incremental evaluation on a hierarchical
structure. The nodes of the tree are denoted by u1, ..., un. We start with a saturated MEP < P, S, G =
associated with the tree. Then we add a new assignment g; on a variable of the sub-system associated with
the node u;. Then, in order to saturate < P,S,Gug; »ieto calculate the solution &' (s.t < P, 5, GUg; =
F G"), we proceed as follows:

e we calculate the solution of the sub-system at the node u; w.r.t the assignments G U gi;

o we propagate to the father and the sons of the node u the assignment of the solution which concerns
yariables in their sub-sytems and so on.

We give a recursive fonction sol for the computation of the solution of the musical equational program.
This is represented in the following schemaz:

It shows the decomposition of the function sol at the node u; in a resolution () of the musical systems
at u; and three recursive calls to the father, left son and right son of u; which are denoted respectively,
by f(ui), l(us) and r(us), on the figure. The definition of the relation F can be given by an automata
(see (Barbar, Desainte-Catherine, Beurivé 1994))

6 Conclusion

We have presented a model for representing musical pieces without repetitions by the means of a temporal
hierarchy. Moreover, this model provides a way to compute automatically some musical characteristics
by using equations systems and values that are given by the composer. The result is a very efficient
software based on automatas solving the systems. Now, the power of expression of the model is too
restrictive. It is necessary to integrate repetitions and several concurrent structurations. Those extensions
will complexify the model and improve its efficiency. Now, we are currently working on the concept of
abstraction of musical hierarchies for representing musical forms and items in the context of an interface
for the composer. The model would then be useful for analyzing too. At last, the study of operators on
other musical dimensions will increase again the power of structuration of the composer (and the power

of expression of an analysis).
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