Efeitos Digitais de Áudio: Filtros e retardos

Flávio Luiz Schiavoni

USP - University of São Paulo - Brazil Orientador: Professor Dr. Marcelo Gomes de Queiroz Computer Music Research Group - IME/USP http://compmus.ime.usp.br

26 de março de 2012

Relembrando

Todo sinal tem duas representações:

- Domínio do tempo
- Domínio da frequência

Filtros

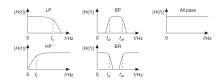
- FIR (resposta ao impulso finita)
- IIR (resposta ao impulso infinita)

Relembrando

Soma de dois sinais:

- Acoplamento
- Atenuação
- Cancelamento

Depende sempre da fase dos sinais.


Como alterar a fase de um sinal?

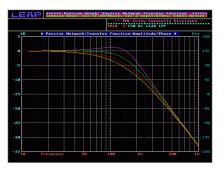
Atraso

(Exemplo em Octave - Obrigado ao André!)

Filtros

- Low pass: Graves abaixo da frequência de corte
- High pass: Agudos acima da frequência de corte
- Band pass: Uma faixa entre fc inicial e fc final
- Band reject: frequências abaixo da fc inicial e acima da fc final
- All pass: Deixa passar tudo com atraso de fase

Classificação de filtros


Filtros

Parâmetros:

- Frequência de corte (fc)
- fator Q (inverso do bandwidth largura de banda)

Depende da ordem do filtro. Filtros de primeira ordem possuem apenas Fc e o slope é fixo.

Slope

Slope (Fonte: http://www.bcae1.com/xoorder.htm)

Chebychev: Q = 1 Butterworth: Q = 0.707 Bessel: Q = 0.58

Linkwitz-Riley: Q = 0.49

Filter

Utilização:

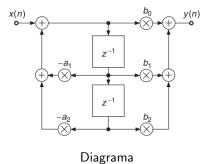
- Cortar graves indesejáveis
- Crossover

Muitas vezes o filtro de passa alta aparece em equipamentos com frequência e slope fixo.

Filter

Utilização:

- Cortar graves indesejáveis
- Crossover


Muitas vezes o filtro de passa alta aparece em equipamentos com frequência e slope fixo.

Podem ser implementado a partir de um Allpass

Equação canônica do AP Filter

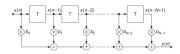
$$x_h(n) = x(n) - a_1 x_h(n-1) - a_2 x_h(n-2)$$

$$y(n) = b_0 x_h(n) + b_1 x_h(n-1) + b_2 x_h(n-2)$$

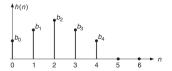
equação canônica

Como implementar um LP a partir de um AP?

$$K = \tan(\pi f_c/f_S)$$


$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}.$$

	b_0	b_1	a_1
Lowpass Highpass Allpass	K/(K+1) 1/(K+1) (K-1)/(K+1)	K/(K+1) -1/(K+1)	(K-1)/(K+1) (K-1)/(K+1) (K-1)/(K+1)


Primeira ordem e segunda ordem

	b_0	b_1	b_2	a_1	a_2
Lowpass	$\frac{K^2Q}{K^2Q+K+Q}$	$\frac{2K^2Q}{K^2Q+K+Q}$	$\frac{K^2Q}{K^2Q+K+Q}$	$\frac{2Q \cdot (K^2 - 1)}{K^2 Q + K + Q}$	$\frac{K^2Q - K + Q}{K^2Q + K + Q}$
Highpass	$\frac{Q}{K^2Q + K + Q}$	$-\frac{2Q}{K^2Q+K+Q}$	$\frac{Q}{K^2Q + K + Q}$	$\frac{2Q\cdot(K^2-1)}{K^2Q+K+Q}$	$\frac{K^2Q - K + Q}{K^2Q + K + Q}$
Bandpass	$\frac{K}{K^2Q+K+Q}$	0	$-\frac{K}{K^2 Q+K+Q}$	$\frac{2Q \cdot (K^2 - 1)}{K^2 Q + K + Q}$	$\frac{K^2Q - K + Q}{K^2Q + K + Q}$
Bandreject	$\frac{Q \cdot (1+K^2)}{K^2Q+K+Q}$	$\frac{2Q \cdot (K^2 - 1)}{K^2Q + K + Q}$	$\frac{Q \cdot (1+K^2)}{K^2Q+K+Q}$	$\frac{2Q \cdot (K^2 - 1)}{K^2 Q + K + Q}$	$\frac{K^2Q-K+Q}{K^2Q+K+Q}$
Allpass	$\frac{K^2Q - K + Q}{K^2Q + K + Q}$	$\frac{2Q \cdot (K^2 - 1)}{K^2Q + K + Q}$	1	$\frac{2Q \cdot (K^2 - 1)}{K^2 Q + K + Q}$	$\frac{K^2Q - K + Q}{K^2Q + K + Q}$

Filtro FIR

$$y(n) = \sum_{i=0}^{N-1} b_i \cdot x(n-i)$$

= $b_0 x(n) + b_1 x(n-1) + \dots + b_{N-1} x(n-N+1)$,

Também possível por FFT. Equalização sem distorção de fase.

Equalizadores

Dois tipos:

- Shelving (Fc e Ganho)
 - Low Shelving
 - High Shelving
- Peak (Fc, ganho e Q)
 - Gráfico
 - Paramétrico

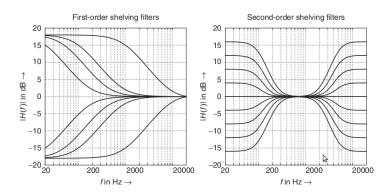
Equalizadores

Shelving: Botão de grave / agudo em rádios de carro. Peak:

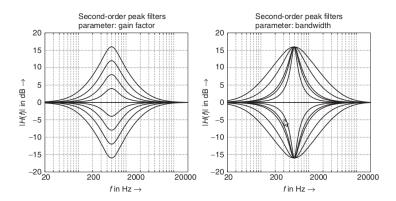

```
LEVEL 1 FREQUENCY BANDWIDTH

3 235 460 0.6 1.0

6 150 1 1k 0.3 1 1.8


-12 9 100 2k 0.3 2.0

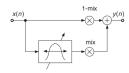
OCTAVE


BYPASS

BYPASS
```

Shelving

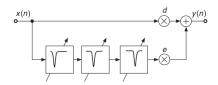
Peak


Wah-wah

BandPass com uma frequência central variável e uma largura de banda pequena.

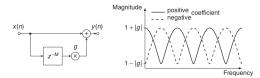
Soma-se com o sinal original.

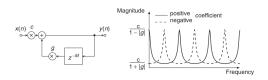
Movendo o pedal, alteramos a fc do filtro passabanda



Phaser

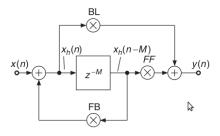
Filtro BR somado ao sinal original.


Oscilador para alterar a Fc.



Filtro Pente

FIR Comb



IIR Comb

Filtro Pente

Universal Comb

	BL	FB	FF
FIR comb filter	1	0	g
IIR comb filter	c	g	0
Allpass	а	-a	1
Delay	0	0	1

Efeitos baseados em atraso

- Vibrato: variação de periódica de pitch
- Flanger, Chorus, Echo, Reverb...

	BL	FF	FB	DELAY	DEPTH	MOD
Vibrato	0	1	0	0 ms	0-3 ms	0.1-5 Hz sine
Flanger	0.7	0.7	0.7	0 ms	0-2 ms	0.1-1 Hz sine
(White) Chorus	0.7	1	(-0.7)	1 - 30 ms	1-30 ms	Lowpass noise
Doubling	0.7	0.7	0	10-100 ms	1-100 ms	Lowpass noise

Obrigado!

Dúvidas?

Computer Music Research Group - IME/USP

http://compmus.ime.usp.br

fls@ime.usp.br