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What is a viola caipira ? 
• It is a typical Brazilian guitar
• Instrument little studied in musical acoustics

Not every BRAZILIAN GUITAR is aVIOLA CAIPIRA

• Variations of geometries, materials, string arrangements, tuning types, etc…

The viola caipira (or the violas caipiras? )

Examples of Brazilian guitars:

Viola Machete Viola Nordestina Viola de Buriti Viola de Fandango Viola de Cocho
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Fernando Sodré performing Luzeiro from Almir Sater
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Objective approach: 
Physical parameters to describe 
the instrument and its sounds.

Structural characteristics

Sounds

Musical acoustics context

Perceptive approach: 
Sensory experience of the individual.

RELATIONSHIP ?

• This research: objective approach to study the viola caipira.

Viola caipira

Folk guitar

Classical guitar
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Objectives of the thesis 

• Identification and study of the vibrational and acoustical
specificities of the viola caipira.

• Development of a sound synthesis model able to reproduce the
specificities of the viola caipira.

1. Experimental study

A. High-speed camera analysis

B. Vibration analysis

C. Sound analysis

2. Numerical study

A. Physical modelling

B. Sound simulations
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II. Experimental study of the viola caipira
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• Rozini brand, Ponteio Profissional  model.

• Smaller body with a narrower waist than those of 
classical guitars.

• Tuning: Rio Abaixo

• Wood types
• Soundboard: Sitka Spruce
• Back and sides: Indian Rosewood
• Neck: Indian Rosewood
• Fretboard: Ebony

The studied viola caipira: a representative exemplar
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A. High speed camera analysis: experimental setup 

High speed camera: Photron, FASTCAM SA-X2

• 1024 × 768 pixels of resolution 

• 5000 frames/sec
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1st pluck2nd pluck after ~14 msString/string collisions

• Particular double pluck
• Non-planar motions
• Collisions between strings

10

A. High speed camera analysis 
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Non-planar motions



• String sympathetic resonances due to the bridge motion.
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A. High speed camera analysis 
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• Sympathetic resonances and beating due to the strings coupling through the bridge.

Only one string is plucked

Sound halo: Effect due to the 
string sympathetic vibrations

1 free string 10 free strings

Beating associated to  the two 
orthogonal transverse motions. 

Beating associated to  the 
interaction of multiple strings. 
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B. Sound analysis 
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• Global vibration map: Operating deflection shapes (ODSs)

f = 129.7 Hz f = 264.1 Hz f = 356.3 Hz f = 751.6 Hz

Measured receptance

A0 T1 T2 T3 Scanning laser vibrometer 
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C. Vibration analysis of the body 



• ODSs along the bridge using a laser vibrometer

10 string/body coupling points

54321
z

y

109876

f = 134 Hz, A0

f = 267 Hz, T1

f = 751 Hz, T3

f = 351 Hz, T2

f = 1794 Hz

• At some frequencies, the mobility at the 10 
points are significantly different.
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C. Vibration analysis of the body 

• These ODSs reveal the coupling between 
strings due to the bridge motion.
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III. Mobility measurements using 

the wire-breaking method

I. Introduction II. Experimental study III. Wire-breaking method IV. Modelling V. Sound synthesis VI. Application VII. Conclusions



Large Mobility Strong coupling
• Powerful sound
• Fast decay

Small Mobility Weak coupling • Less powerful sound
• Slower decay

(ω) = 
(ω)
(ω)

• Definition: transfer function

• The mobility measured at the bridge quantifies the conversion of string force into
bridge velocity (degree of coupling between strings and body )
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Mobility: definition and why measuring



Mobility measurement using the hammer method (classical method)
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Mobility measurement using the wire-breaking method
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𝑌 ω =
𝐴 ω

𝑓

Wire breaking force

Mobility: Replaces the impact hammer method:

Excitation at the coupling point

Excitation in different directions 

Low cost (suitable for makers)

Measurement of  𝑓 is required
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Wire-breaking method vs. Hammer method



Calibration of mobility from 𝟎 measurement

Wire
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• Wire diameter: 100 μm
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The “Roving Wire-Breaking Technique”: modal analysis procedure

12345

0
Accelerometer 

position 

x

y
z

Wire holder

• Excitation positions:            to
• Excitation normal and parallel to the soundboard
• Response position: 
• Wire diameter: 100 μm
• Instrument on a guitar stand

• 12 inertance curves
• Single-Input-Multiple-Output 

0 1 5

0

1st step. Estimation of poles:  ESPRIT (Roy & Kailath, 1989)

𝑠 𝑛 = 𝑎 𝑒 𝑒 ( )

𝑲

+ 𝑤 𝑛

Signal subspace

Noise subspace

• Time domain method

2nd step. Estimation of the mode shapes components

• Fit in the frequency domain (collocated mobility)

• Non-Negative Least Square Procedure (NNLS)

𝑌 , ω = 𝐴
𝑗ω

ω + ω + 𝑗2ξ ω ω 
 

𝐻 ω , computed from poles!𝐴 = ϕ , ϕ ,

min
𝒙

𝑪𝒙 − 𝒅 𝒙 = [𝐴 … 𝐴 ]𝑻, 𝑥  ≥ 0  ∀𝑘 

High-resolution modal analysis 

Constraint 1: 𝐴 is positive

Constraint 2: 𝐴 is real

• Other modal amplitudes: Standard Least Square

- Provides intrinsically the modal order 

𝑾↑ 2𝐾 = 𝑾↓ 2𝐾 𝑹(2𝐾)

• The signal subspace verifies the rotational invariance property:

𝑹(2𝐾): matrix whose eigenvalues are the poles 𝑧 = 𝑒

𝑾 2𝐾 : basis of the signal subspace
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Modal fit
Modal identification
• 47 modes between 50 Hz and 3000 Hz

The “Roving Wire-Breaking Technique”: modal analysis procedure

f  = 133.9 Hz f  = 264.4 Hz f = 355.4 Hz

Mode shapes at the string/body coupling points
A0 T1 T2



24

VI. Physical modelling
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Principle of the model: hybrid modal approach
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String displacement

Bridge displacement Bridge motion equation (modal)

String motion equation (modal)

Simplified case: 1 string,1 polarization
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At the string/bridge coupling point, x = L:

𝒆

𝒃

𝒄

𝒄

27



Fully coupled system:10 strings, 2 polarizations 

𝑧 (𝑥, 𝑡)

𝑦 (𝑥, 𝑡)

𝑦 (𝑝 , 𝑡)

𝑧 (𝑝 , 𝑡)
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Strings

𝜱 (𝑥)

𝜱 (𝑥)

• Resolution in time domain
• Centered finite differences
• Explicit matricial formulation 

Bridge

28
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String/string collisions modelling
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Collisions in musical instruments

(Walstijn, 2017)

String-string collisions
30



String/string collision modelling

No 
Penetration
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𝑌( ) 𝑥, 𝑡 =  𝑦
( )

+ 𝑦 (𝑥, 𝑡)

𝑍( ) 𝑥, 𝑡 =  𝑧
( )

+ 𝑧 (𝑥, 𝑡)

𝑟 𝑥, 𝑡 =  (𝑌 − 𝑌 ) −(𝑍 − 𝑍 )
 

 γ(𝑥, 𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑍 − 𝑍

𝑌 − 𝑌

• Distance between centroids: • Impact angle:• Absolute coordinates:

Coplanar cross-sections of two strings:
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String/string collision modelling
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• Nonlinear model with hysteresis damping (Hunt and Crossley, 1975)

Two  colliding cross-sections:

𝑭𝒊𝒎𝒑 𝒔 (𝑥, 𝑡) = 𝐾 δ 𝑥, 𝑡 + λ 𝛿 𝑥, 𝑡 δ̇(𝑥, 𝑡)

Contact stiffness Damping coefficient

Compliance exponentInterpenetration

32
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V. Sound synthesis of the viola caipira: 
numerical experiments
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Simulation parameters

Number of modes

• Strings: modes up to 5000 Hz

• Body:   20 modes between  0 Hz and 1000 Hz 

Excitation model

Impact parameters 
Table 1. Impact model parameters

Excitation position: 8.5 cm from the bridge

Maximum amplitude 

Initial time

Release time

𝐹(𝑡)

Ramp function

• 𝑡 − 𝑡
( )

= 8 𝑚𝑠

• 𝐹
( )

= 3 𝑁

𝐹

Sampling frequencies (after 
convergence tests)

A. Without collisions: 220.5 kHz

B. With collisions: 441.5 kHz
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Organization of collisions in space and time

Pluck parallel to the soundboard

Collisions space-time diagram

• Collision point moves along the string length. 

• Collisions occur only in the immediate transient phase just after the pluck. 
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Collisions effects on the sound: buzzing and spectral enrichment

Without collision With collision

• Buzzing effect: induced by the repeated collisions in the early transient phase.

• Spectral enrichment: spectral rays are broadened during the collisions .
36
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Collisions effects on the sound: redistribution of the spectral components

Without collision With collision

• The filtering related to the plucking position is cancelled since the collision point 
moves.
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Collisions effects on the vibration: polarization change mechanism

Parallel pluck Inclined pluck

y
D4D3 D4D3

• The plucking angle plays an important role in the polarization change.

y

Polarization remains in the 
plane

Polarization changes
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Fully coupled system simulations: sympathetic resonances and beating

Pluck parallel to the soundboard

Single string (D4)

10  strings (D4) 10 strings (D4)

Without collisions With collisions

[m
m

]

0                       Time [s] 5  

Sympathetic resonances!

• Strings couplings through the bridge induce  sympathetic resonances.

Time-history of string 5 (G3)

• Beating phenomena are also observed on some strings.  
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Parallel displacement

Normal displacement
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Fully coupled system simulations: influence of collisions on the aftersound

Without collisions With collisions
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Parallel displacements

Normal displacements
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Fully coupled system simulations: effect of the pluck direction

Ten strings (D4)

• The sound halo is much more perceptible for an excitation normal to the soundboard.

Ten strings (D4)

Parallel pluck Normal pluck

41
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VI. Application to the instrument making: 

tools for makers

VII. Conclusions



• Integration to the platform

Goal
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i/ Wire technique: low cost technique for measuring mobilities

ii/ Sound synthesis tool

• Collaboration with : Music Instrument Making Platform

• http://pafi.univ-lemans.fr
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VII. Conclusions and perspectives

VII. Conclusions



• Specificities of the viola caipira : 
i) Particular double pluck
ii) Sympathetic resonances and beating phenomena 
iii) Collisions between strings.

• A physical model for sound synthesis including string/string collisions. It reproduces the 
main sound features of the viola caipira.

• Collision effects on the sound: 
• Buzzing effect/spectral enrichment
• Redistribution of spectral components
• Polarization change

• The Roving Wire-Breaking Technique: 
• Novel procedure for modal analysis
• Low cost and suitable for instrument makers
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Conclusions



• Parameters adjustment and experimental validation of the sound synthesis model

• Inclusion of string non-linearities

• Sound radiation model 
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Perspectives



R&D Projects Computer-aided musical instrument manufacturing - viability

• URUTAU PROJECT: “Cloud environment for design, analysis and simulation of
musical instruments”.

• XURI PROJECT: “Small room acoustic correction – web application for optimal
treatment”.

Acoustic consulting ...

Acoustic panels manufacturing ...
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Contact: pitupaiva@gmail.com
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The synthesized viola caipira!



Thank you for your attention.

O Violeiro by Almeida Júnior, 1899.
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