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Abstract. The derivation of SOM-G granular synthesis instruments from
recorded sounds by an analysis system based on the matching pursuit
algorithm is presented. The implementation of the matching-pursuit algorithm
and the structure of the dictionary of Gabor atoms are discussed. Audio
signals recorded from acoustical musical instruments are analysed and
compared with the reconstructed signals.

1. An Analysis and Synthesis Experiment in Granular Synthesis

This paper presents the implementation of a system of analysis and synthesis of audio signals
based on an atomic model of signal. The decomposition of audio signals into Gabor atoms is
done by an implementation of the matching-pursuit algorithm. The atoms that result from the
decomposition of an input signal are coded as an instrument in SOM-G language, that can be
rendered into an audio signal and allowing for comparison between original and reconstructed
signals.

The main objective of the implementation of the matching pursuit algorithm described
in this paper is to obtain decompositions of a signal over a dictionary of Gabor atoms which
duration is less than 100ms. Such durations are appropriate to the SOM-G instruments
definition as will be discussed. The modelling of the sound of acoustical musical instruments as
SOM-G instruments was the motivation for this implementation. So, obtain a compact
decomposition of a signal is desirable, but was not the main objective of the implementation.
The implementation can handle signals of different time-frequency characteristics. This is
required for the decomposition of recorded samples from acoustical instruments that usually
have transients and almost stationary parts in the same signal.

2. Introduction

The physicist Denis Gabor stated that a signal could be represented by a linear combination of
elementary signals, named atoms or acoustical quanta [Gabor 1946]. He proposed a signal
model in which time-domain and frequency-domain information are not dissociated, and
suggested that the expansion in terms of atoms was more meaningful than Fourier analysis
because the signals was considered simultaneously in time and frequency domains [Gabor
1947].

The model of Gabor inspired the synthesis technique named Granular synthesis, in
which a signal is composed by a large number of short duration sounds named grains or atoms
[Roads 1988]. Xenakis was the first to explain a compositional theory for granular synthesis
[Xenakis 1963]. He proposes a possible approach to the model of Gabor in the context of an
analog synthesis implementation, using sinusoidal waves of around 40 ms of duration
modulated by rectangular envelopes. Curtis Roads systematically researched granular synthesis
between 1975 and 1981, and is responsible for the first effective implementation of the
technique [Roads 1987], [Roads 1988]. Barry Truax made the first real time granular synthesis
experiment using a digital signal processing hardware [Truax 1988]. The difficulties on the
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generation and regulation of grains in granular synthesis has been evidenced since the first
implementations, as it is usually necessary hundreds or thousands of grains per second to
produce granular events. The active research on granular synthesis in the last years brought up
various approaches to grains generation and regulation, and granular synthesis was used to
create entirely new sounds. Several new approaches were developed. Some few examples show
the variety of new approaches to granular synthesis regulation: cellular automata as granular
regulation mechanism [Miranda 1995], granulation and synthesis from natural sounds as
granular generation, allowing time or pitch transformations [Jones and Parks 1988],[Truax
1994], [Keller and Truax 1998], applications of group theory to granular synthesis [Fabbri and
Maia Jr 2007], among other works.

Analysis-synthesis systems provide a conceptual framework for the development of
signal modelling methods and their applications. The existence of a feasible analysis method for
granular synthesis allows that the analysed signal be compared with the reconstructed signal so
that the atomic model and the implementation can be tested.

There are some analysis methods that can derive time-frequency signal models. The
Wavelet transform can be used to extract time-frequency information from audio signals
[Kronland-Martinet 1988],[Faria 1997]. Basis pursuit applies modern linear algebra techniques
to decompose a signal into an optimal combination of atoms chosen from a base [Chen,
Donoho, and Saunders 1998]. Matching-pursuit [Mallat and Zhang 1993] is a greedy algorithm
for the atomic decomposition in terms of atoms chosen from a dictionary.

The matching-pursuit algorithm is the analysis method that was implemented in the
system described in this paper because its simplicity, stability and flexibility. Some
improvements on the performance of the original algorithm has been presented, like Fast
Matching Pursuit [Gribonval 2001] and Harmonic Matching Pursuit [Gribonval, Bacry 2003].
Improvements on the resolution of the analysis were brought by High Resolution Matching
Pursuit [Gribonval, Bacry, Mallat, Depalle, Rodet 1996], and a measure of the destructive
interference between atoms can be found in [Shynk, Daudet and Roads 2008].

3. Gabor Atoms

The greatest part of the theory of communication of the early twentieth century was developed
on the basis of Fourier theorem. According to Gabor, though the Fourier method is
mathematically correct, the physical interpretation of the results is somewhat difficult to
reconcile with physical intuitions [Gabor 1946]. For human hearing, time and frequency
patterns are associated in sound perception, but in Fourier theory time and frequency domains
are mutually exclusive.

Gabor proposed a signal representation that reveals both its time and frequency
structures. All the mathematical development can be found in [Gabor 1946] and [Gabor 1947],
and we will just highlight the main results. The time frequency localization of each atom is
constrained by a resolution limitation similar to the Heisenberg uncertainty principle of quantum
mechanics.

AtA f=1 (1)

The inequality in (1) establishes an important relation between time and frequency
resolution. In order to achieve the best time and frequency discrimination, the ideal form of the
elementary signals should be one for which the product AtAf has its minimal value and the
inequality (1) becomes an equality. The signal for which AtAf is unitary is the product of a
harmonic oscillation by a Gaussian pulse.
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The parameter fo is the mean frequency of the atom, and to is the mean epoch. The
parameter o is related to the dilation of the pulse that modulates the harmonic oscillation, and
determines the effective duration of the atom and its effective frequency bandwidth.

Real atoms must have an additional parameter, the phase shift ¢ of the harmonic
oscillation. The mathematical form of real Gabor atoms is shown by expression (5).

w. (1) =e " cos (2 fo(t—t,)+p) ©)

Figure 1 shows the aspect of a real Gabor atom for o = 20, fo=110 and ¢=0. This value
of o implies in At=88,2 milliseconds and Af=11,28 Hertz. The dotted line represents the
gaussian function that modulates the harmonic oscilation.
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Figure 1 — A real Gabor atom.

Each atom can be represented as a rectangle in a time x frequency diagram . The center
of the rectangle stays at the coordinates of the mean epoch and mean frequency; its width is
proportional to its effective duration At and its height is proportional to its effective bandwidth
Af. Such diagram is called an information diagram, and the rectangles that represent atoms in an
information diagram are called characteristic cells.

Figure 2 shows an information diagram and the representation of atoms as characteristic
cells. The information diagram contains information about both time and frequency structures of
a signal.
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Figure 2 — The Information Diagram

4. Overview of the Matching Pursuit Algorithm

Matching Pursuit [Mallat and Zhang 1993] is a greedy iterative algorithm for deriving signal
decompositions in terms of expansion functions chosen from a dictionary of basis functions or
atoms. At each iteration, the algorithm looks in the dictionary for the atom that best
approximates the signal, where the two-norm is used as the approximation metric. The
contribution of the chosen atom is then subtracted from the signal and the algorithm restarts to
one more iteration over the residual, until some halting criterion is met, as a residual energy
threshold. The mathematical development of the algorithm and the proof of its convergence can
be found in [Mallat and Zhang 1993], and a comparison with other atomic decomposition
methods can be found in [Goodwin 1997].

Let D be a dictionary of complex atoms. Each function d,€D can be characterized
by its effective duration 9, its mean epoch t and its mean frequency f. Let all atoms in D be
normalized

<dk’dk>:1’de€D (7

The task at the i-th iteration of the algorithm is to find the atom d,ED that

minimizes the two-norm of the residual signal r;. It can be shown that this is equivalent to
choosing the atom whose inner product with the signal has the largest magnitude

d,=arg maxdleDKd,w ”i>| (8)

The i-th expansion coefficient o, is the inner product between the chosen atom d; and the
residual signal r;.

o=(d,; 1) )

At the end of the iteration, the term o,d; is subtracted from the residual r;

rig=r,—od; (10)
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After I iterations, the signal S can be represented by the expression

1
S=2 odqtr,, (1)

i=1

The mean-squared error of the reconstructed signal decreases as the number of
iterations increase, so matching pursuit can derive a reasonable approximation for a signal. It is
well-known that matching-pursuit does not lead to optimal approximations, but greedy
approaches are justified given the complexity of finding an optimal approximation, a NP-Hard
problem [Goodwin 1997].

With a dictionary of Gabor atoms, a matching pursuit defines a time-frequency
transform. An appropriate dicionary is required to achieve compactness, but there is a
compromise between the number of atoms present in a dictionary and the number of
computations necessary to choose the atom that best fits the signal at each iteraction.

5. An Implementation of the Matching-Pursuit Algorithm

The matching-pursuit algorithm was implemented as a java package and integrated to the
implementation of the SOM-G language packages. The result of the decomposition of an audio
file is expressed as a SOM-G instrument. A granular analysis/synthesis system was
implemented; the SOM-G interpreter can reconstruct the signal from the granular synthesis
instrument obtained . Figure 3 shows a fluxogram for the decomposition of a signal.

) . Choose the atomthat has Calculate the inner product between
‘ Read a Signal froma File ‘ the maximum inner product the affected part of the signal
with the signal and the atoms of the dictionary
No

‘ Initialize Dictionary ‘

Subtract the contribution of
Calculate the inner product the atom fromthe residual

between the signal and signal and sumit to the Yes

all atoms of'the dictionary reconstructed signal

‘ Generate Instrument ‘

Figure 3 — Fluxogram of the decomposition process

In order to obtain an analytic signal from a real signal, a Hilbert transform is done over
it. This is not a requirement of the matching-pursuit algorithm that can be implemented with real
atoms by the introduction of a phase parameter in the dictionary, but complex atoms
incorporates the phase as an implicit parameter and lead to a simpler algorithm. After the
decomposition, the atoms can be converted to real signals and the phase can be extracted from
the complex coefficients that result from the decomposition.

The computation of the correlations <d,»,7” ,-> for all d,€D is costly, so the
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implementation previewed a strategy to avoid unnecessary computations. The atoms used in the
implementation are finite, and each atom extracted from the residual signal affects only part of
the signal. At each iteration the correlations are stored, and when the atom that has the largest
magnitude of correlation is chosen, only the correlations in the part affected by the subtraction
of its contribution must be recalculated for the next iteration. The class diagram of the package
atomic_decomposition is shown in figure 4.

The dictionary composed only by Gabor atoms was constructed with only five effective
durations for most of the signals that were decomposed: 3, 6, 12, 24 and 48 milliseconds. For
each duration, the frequencies are distributed according to the interval calculated by the relation
(1), from a minimal fixed value to half of the sampling rate of the analysed signal, according to
Nyquist sampling theorem. The translation of the atoms are fixed as the effective duration of the
atoms.

The diagram of the classes in the package atomic_decomposition is shown in figure 5.
The package has only three classes: AtomicDecomposer, GaborDictionary and Signal.

The class AtomicDecomposer implements the matching pursuit algorithm. It has a
constructor that accepts as argument a reference for an audio file. The code bellow shows the
creation of an instance of the AtomicDecomposer class:

mp = new AtomicDecomposer (new File (“sample.wav”));
mp.start () ;

The class GaborDictionary has its structure defined by an array that stores the durations
in milliseconds of the grains:

durations[0] 0.003f;
durations([1l] = 0.006f;
durations([2] = 0.012f;
durations[3] = 0.024f;
durations([4] = 0.048f;

A new instance of the GaborDictionary class can be created as follows.

/* Creates a Gabor Dictionary with minimum frequency of 15
Hz, maximum frequency of 44100 Hz and sample rate of 44100
Hz */

DC = new GaborDictionary(l5, 22050, 44100);

The class Signal can represent a complex signal of one or two channels, and has many
convenience methods. An example of the creation and initialization of an instance of the Signal
class is shown bellow:

sg = new Signal (new File (“sample.wav”));

sg.create analytic signal();
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atomic_decomposition

AtomicDecomposer GaborDictionary
- fllrs;_rund: tqotol]lean + sample_rate : int
- L_bound :in - thl : float][
- R_hound :int] + number_of_frequencies : int]
- LP_bound : int] + durations : float]
- RP_bound :int] + frequencies : float]]
- Frequencies : int] — -
- Durations : int] + GaborchFiongrv(fO :ﬂoat, 1 :float, srint)
CINCR : int -DC + get_duration(index . int) : float
~first : boolean M + get_frequency(duration_indesx : int, indesx: inf) : float
- Frame_lncrement : int + create_tableq : void
- rrinfy Toat + grain_at{frequency_index : int, duration_index : int) : grain
- maxfq - float + get_grain({frequency_index : int, duration_index : int) : grain
+ base_frequency : float +get_grain_table(G : grain) : doublell
- auloMaxFreq : boolean + get_autocorrelation(g : grain) : double

- initial_energy : double
+ number_of_iteractions : int=10

+ AtomicDecomposer{wavefile : File, min_freq : float, max_freq : float)
+ AtomicDecomposer{wavefile : File)

+ start) : void

+ rund) :void

+ get_signal_energy{CH : inf) : double

+ get_signal_length() : int

+ get_base_frequency() : float

+get_segment_length() @ int

+ get_instrument{name : String) : String

+ get_duration() : float

=9 + 5y

Signal

+ signal : double[dl

+ pi: double

+numher_of_frames : int

+ sample_rate :int

+ne:int

+fsint

+f:int

+ il int

+ Signal(samples : doublell, sample_rate :int, fl 2 inf)

+ Signal{wavefile : File)

+ Signal{wavefile : File, big_endian : hoolean, frame_size . int, sample_rate : inf)

+ Signal(length :int, sample_rate : int)

+ load{wavefile : File) : void

+ load(wavefile : File, hig_endian : boolean, frame_size : int, sample_rate . int) : void

+ get_sample(channel : int, index : int) : double

+ get_sample(channel : int index : int, value : douhle) :void

+ get_complex_sample(channel ;int, index :inf) : crmplx

+ subtract{another_signal : douhle], coeficient: float, starting_paint : int, channel : inf) : boolean
+ compute_residual_energyiatom : double[ll, coeficient : cmplx, staring_point : int, channel : int, Lenath : int) : double
+ compute_energy(statting_paint : int, channel : int, Length : inf) : double

+ sum(anather_signal : double[], coeficient : float, starting_point : int, channel : inf) : boolean

+ subtract{atom : doublefl], coeficient : cmplx, starting_paint : int, channel : inf) : void

+ sum{atom : double[, coeficient : cmplx, statting_paint : int, channel : int) : void

+ get_inner_product{Atom : double(]], starting_paint : int, channel :int, N int) - cmplx

+ get_inner_product{Atomn : double([l, starting_point : int, channel :int, N : int, step :inf) : cmplx
+ FFTiarray : double[[) : doubleg]

+ |FFT{array : doublelll) : douhle(]l

+ get_energy(CH . inf) : double

+get_Re_energy(CH : int) : double

+ create_analytic_signal() : void

Figure 4 — Package atomic_decomposition — Class Diagram

6. Results

The decomposition and resynthesis of a berimbau note is shown bellow. A berimbau is an
african percussion instrument. It has only one string, that is played with a wood stick and a rock.

Figure 5 shows the recorded signal. Figure 6 shows the reconstructed signal. Figure 7
shows the spectrum of the analysed signal, and figure 8 shows the spectrum of the resynthesized
signal. The signal was recorded at 44100 Hz, 16 bits. The analysis resulted in 6965 grains for
each channel.




* Simpé6sio Brasileiro de
Computagao Musical
2th Brazilian Symposium on Compu s

-0.8701

-0.8701
5.002

T

Time (s)

Figure 5 — The original recorded signal

-0.9236

T

-0.9236
5

Time (s)

Figure 6 — The resynthesized signal
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Figure 8 — The spectrum of the resynthesized signal
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7. Future Work

A bank of granular synthesis instruments derived from acoustical instruments can be
constructed and employed for music composition applications, improving the musical
possibilities of the SOM-G language. A bank of phonems can also be modeled as
granular synthesis instruments and applied to the design of speech synthesis systems.
An implementation of the whole system in a faster, non-interpreted language is
desirable.
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