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Abstract. This paper introduces the alpha version of a

Python library called Iracema, which aims to provide

models for the extraction of meaningful information from

recordings of monophonic pieces of music, for purposes

of research in music performance. With this objective in

mind, we propose an architecture that will provide to users

an abstraction level that simplifies the manipulation of dif-

ferent kinds of time series, as well as the extraction of seg-

ments from them. In this paper we: (1) introduce some key

concepts at the core of the proposed architecture; (2) list

the current functionalities of the package; (3) give some

examples of the application programming interface; and

(4) give some brief examples of audio analysis using the

system.

1 Introduction

Despite the fact that music performance is a central ele-

ment to nearly every culture, its empirical study is rela-

tively recent, with the seminal works dating back to the

turn of the twentieth century. As stated by Clarke in

[1], “only once methods had been developed to record ei-

ther the sounds of performance, or the actions of instru-

ments, was any kind of detailed [empirical] study possi-

ble”. Over the last few decades, we have witnessed con-

siderable growth in this field of study [2, 3], and the avail-

ability of new tools and technologies for extracting infor-

mation from performances have played a pivotal role in

this surge. We believe that the continuous development

of more specialized tools to extract information from mu-

sic performance, as well as better techniques for obtaining

more meaningful representations of musical content, will

be of crucial importance to continually support empirical

research in music performance.

In this scenario, we introduce the alpha version

of Iracema, a Python package for audio content analysis

aimed at the empirical research on music performance. It

provides functionalities for extracting patterns of manipu-

lation of duration, energy, and spectral content from mono-

phonic audio, specially for instruments such as clarinet,

flute, trumpet, and trombone. Its development was mo-

tivated by research projects conducted at CEGeME1, and

was strongly inspired by a previous Matlab tool developed

by the group, called Expan [4], which has not been released

for public use.

In contrast to instruments like guitar or piano, in

which the excitation that produces sound only happens at

*Supported by CAPES.
†Supported by CNPq.
1http://musica.ufmg.br/cegeme/

the beginning of a note2, in woodwind and brass instru-

ments, the player continuously feeds energy into the sys-

tem, by means of high pressure air from his lungs. There-

fore, due to the dynamic control that the player has over the

acoustic properties of the sound, a single note might con-

tain a lot of important expressive information, e.g., timbral

manipulations, or dynamic intensity variations. It is harder

to extract this kind of information from polyphonic musi-

cal signals, such as a full orchestral recording, than from

signals of a single source. So a reasonable approach is

to use monophonic recordings to better understand them.

Another characteristic of the instruments of our interest, is

that they can produce very soft attacks, which makes the

precise detection of note onsets tricky, especially avoiding

the occurrence of false positives. Thus, the techniques im-

plemented on Iracema focus mainly on the extraction of in-

formation from monophonic sounds with soft note attack3.

2 Iracema

Iracema is licensed under the GNU General Public Li-

cense v3.0, and its source code can be freely obtained at

https://github.com/cegeme/iracema. To ob-

tain more detailed information about the library, like usage

examples, more information about the feature extractors

available, library modules, and extensive documentation of

the API, check the online documentation, which is avail-

able at https://cegeme.github.io/iracema.

Iracema uses NumPy arrays for storing and ma-

nipulating data, providing a new level of abstraction on top

of such objects [5]. It also wraps some functionalities from

SciPy [6] to provide methods with a more natural interface

for audio content extraction operations, as well as compat-

ibility with Iracema’s objects.

2.1 Architecture

Software architecture refers to the set of structures needed

to reason about a system. These structures are comprised

of software elements, relations among them, and proper-

ties of both elements and relations [7]. This section will

discuss some import aspects of Iracema’s architecture and

offer an overview of the elements that compose the core

functionalities of the library.

Audio content analysis systems rely on the ma-

nipulation of dynamic data, i.e., data that represent an at-

tribute’s changes over time. Thus, time series is a fun-

damental element in Iracema’s architecture. The starting

2I.e., the plucking of strings in a guitar or a hammer hitting the strings

of a piano.
3Monophonic sounds with soft note attacks motivated the develop-

ment of the system, but the reader should be aware that some functionali-

ties of Iracema could also be applied to polyphonic or percussive sounds.
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Figure 1: Diagram showing the core classes of
Iracema.

point for any task performed by the system is the audio

time series, from which other kinds of time-related data

will be extracted. The transformation of time series into

other time series, to obtain more meaningful representa-

tions of the underlying audio, is a common behavior of

audio content analysis systems, usually called feature ex-

traction. The implementation of such extractors usually

depends on some recurrent types of operations, like apply-

ing sliding windows to a series of data, for example. In

Iracema, these operations are called aggregation methods.

Sometimes it will be necessary to deal with a spe-

cific excerpt of a time series, such as a musical phrase or

a note. There is another important element in the archi-

tecture, called segment, that can be used to delimit such

excerpts. A user may sometimes specify the limits for a

segment, within the time series, if he is already aware of

its beginning and end; however, most of the time, users

will expect the system to identify such limits by itself, a

common kind of task in audio content extraction, known

as segmentation.

Some of the aforementioned elements, like au-

dio, time series, and segments have been implemented as

classes, since they have intrinsic data (e.g., the samples

of the time series, and the start/end of the segments) and

behaviour (e.g., generating time vectors in time series or

calculating indexes in segments). Figure 1 shows those

classes in a diagram. The Audio class inherits the func-

tionalities from TimeSeries, and add some specific be-

haviours (such as loading wave files). Segments provide

a handy way to extract corresponding excerpts from time

series of different sampling rates, since it performs all the

necessary index conversion operations to extract data that

coincide with the same time interval.

Other elements have been implemented as meth-

ods that take objects of those classes as input and out-

put another object. For example, the method fft takes

as input an audio object, a window size, and a
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Figure 2: Extracting features from an audio file.

hop size, and generates a time series in which each sam-

ple contains all the bins of the FFT for the interval cor-

responding to hop size. Another example, the method

spectral flux will take a time series containing the

result of an FFT operation as input and generate another

time series containing the calculated spectral flux. Figure

2 shows a diagram that illustrates the typical workflow for

performing basic feature extraction from audio files.

Segmentation methods will usually take

time series objects as input to output a list of

segments (Figure 3). Then, these segments can be used to

easily extract excerpts from time series objects (Figure 4),

using square brackets (the same operator used in Python

to perform indexing/slicing operations).
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Figure 3: Extracting segments from time series.

2.2 Modules and functionalities

These are the modules that compose Iracema, and their re-

spective functionalities:
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Figure 4: Using a segment to slice a time series.

◦ timeseries: contains the definition of the classes

TimeSeries and Audio.

◦ segment: contains the definition of the classes

Segment and SegmentList.

◦ spectral: contains methods for frequency domain

analysis (currently the FFT);

◦ pitch: a few different models for pitch detection.

◦ harmonics: a model for extracting harmonic compo-

nents from audio.

◦ features: contains methods with the implementation

of several classic feature extractors.

◦ segmentation: methods for automatic audio seg-

mentation.

◦ plot: contains several different methods for plotting

time series data.

◦ aggregation: contains some common aggregation

methods that can be useful for implementing feature ex-

tractors.

◦ io: subpackage containing IO methods, for load-

ing/writing files, playing audio, etc.

◦ util: subpackage containing some useful modules for

unit conversion, DSP, windowing operations,etc.

2.3 Pitch detection models

The module pitch contains models for pitch detection.

At the time this paper was finished, two methods had been

implemented, as well as an extra method that wraps a

model from an external library. The following list shows

the pitch methods available:

Harmonic Product Spectrum Measures the maximum

coincidence for harmonics, based on successive down-

sampling operations on the frequency spectrum of the

signal [8].

Expan Pitch Based on the algorithm implemented in Ex-

pan [4]. It chooses the highest peaks in the frequency

spectrum of a signal as potential candidates, and then

extract their theoretical harmonics. The candidate with

the higher harmonic energy is chosen as the fundamental

frequency.

CREPE Based on a deep convolutional neural network

operating directly on the time-domain waveform input

[9]. This is a wrapper that uses an external library.

2.4 Feature extractors

These are the methods available in the module

features:

Peak Envelope Extracts the envelope of the waveform by

extracting the peaks in the amplitude for each analysis

window.

RMS Calculate the root mean square of a time-series.

This is usually a good better choice for extracting the

envelope of an audio signal, since it is more closely re-

lated to our perception of intensity that the peak envelop.

Zero-crossing The zero crossing is a measure of how

many time-series a signal crosses the zero axis in one

second. It gives some insight on the noisiness character

of a sound.

Spectral Flatness Gives an estimation of the noisi-

ness/sinusoidality of an audio signal. It might be used

to determine voiced/unvoiced parts of a signal [10].

HFC Measures of the amount of high frequency content

of a time-series spectrum. It produces sharp peaks dur-

ing attacks transients [11] and might be a good choice

for detecting onsets in percussive sounds.

Spectral Centroid The spectral centroid is a well known

timbral feature that is used to describe the brightness of

a sound. It represents the center of gravity of the fre-

quency components of a signal [12].

Spectral Spread Gives an estimation of the spread of the

spectral energy around the spectral centroid [10].

Spectral Flux : Measures the amount of change between

adjacent spectral frames [13].

Spectral Skewness Measures how symmetric is the distri-

bution of the values for the spectral magnitudes around

their arithmetic mean [14].

Spectral Kurtosis Measures if the distribution of the

spectral magnitude values is shaped like a Gaussian dis-

tribution or not [14].

Spectral Rolloff The spectral rolloff is a measure of the

bandwidth of the spectrum [14]. It is defined as the point

in the spectrum bellow which a percentage k of the spec-

tral energy is contained.

Spectral Entropy Measures the unpredictability or disor-

der in the distribution of the spectral energy [15].

Spectral Energy The total energy of a frame of the spec-

trum.

Harmonic Energy The total energy of the harmonic par-

tials of a time-series.

Inharmonicity Determines the divergence of the time-

series spectral components from an ideal harmonic spec-

trum.

Noisiness It is the ratio of the noise energy to the total

energy of a signal. Represents how noisy a signal is

(values closer to 1), as oposed to harmonic (values close

to 0) [10].

Odd-to-Even Ratio It is the ratio between the energy of

the odd and even energy harmonics of a signal.

3 Examples

This section shows some basic code examples for the li-

brary.
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1 import iracema

2

3 # loading audio file

4 audio = iracema.Audio(

5 "audio/03 - Clarinet - Fast Excerpt.wav")

6

7 # plotting waveform

8 audio.plot()

9

10 # playing audio

11 audio.play()

Listing 1: Loading audio and plotting waveform.

Loading audio files in Iracema is pretty straight-

forward, and the only thing that must be specified is a

string containing the path to the audio file that should be

loaded4. In code listed above, the initializer method for

the class iracema.Audio shown in line 4 will load the

content of the wave file into an audio object. Then, the

object’s plot()method (line 8) will display its waveform

(shown in Figure 5), automatically setting some basic plot

parameters, such as axis labels and title, by using metadata

from the audio time series. In line 11, the method play()

will reproduce the corresponding audio.

12 # calculate FFT

13 window_size, hop_size = 2048, 1024

14 fft = iracema.spectral.fft(

15 audio, window_size, hop_size)

16

17 # plot spectrogram

18 iracema.plot.plot_spectrogram(

19 fft, fftlim=(0,10000))

Listing 2: Calculating FFT and plotting spectro-
gram.

The method iracema.spectral.fft()

shown in line 14 will calculate the FFT for the au-

dio file, using a sliding window of size 2048, with

1024 samples of overlap. It will generate another

time series object as output, which will contain mul-

tiple values per sample, one corresponding to each

bin of the FFT. It will then be passed to the method

iracema.plot.plot spectrogram() in line 18,

to obtain the visualization shown in Figure 6.

20 # extract the pitch and then the harmonics

21 pitch = iracema.pitch.hps(fft)

22 harmonics = iracema.harmonics.extract(fft, pitch)

23

24 # plot the harmonics over the spectrogram

25 iracema.plot.plot_spectrogram_harmonics(

26 fft, pitch, harmonics['frequency'],

27 fftlim=(0,12000))

Listing 3: Extracting pitch and harmonics.

The pitch will be extracted from the signal

using the method iracema.pitch.hps() in line

4Iracema uses the library audioread [16] to load audio files, and can

handle different audio file formats.

0 1 2 3 4 5 6 7 8
time (s)

0.2

0.1

0.0

0.1

0.2

am
pl

itu
de

03 - Clarinet - Fast Excerpt.wav

waveform

Figure 5: Waveform for the audio file loaded.

21, and then, in the next line, passed as a parame-

ter to the method iracema.harmonics.extract(),

along with the previously calculated FFT. The method

for extraction of harmonics will extract 16 harmonics by

default, but a different number could be specified, us-

ing the optional argument nharm. In line 25, both

objects will be plotted over a spectrogram using the

method iracema.plot.plot spectrogram har-

monics(), resulting in the plot show in Figure 7.

28 # extract some features

29 sflux = iracema.features.spectral_flux(fft)

30 sflat = iracema.features.spectral_flatness(fft)

31 sc = iracema.features.spectral_centroid(fft)

32 no = iracema.features.noisiness(fft,

33 harmonics['magnitude'])

34 hfc = iracema.features.hfc(fft)

35

36 # plot waveform and other features

37 iracema.plot.plot_waveform_trio_and_features(

38 audio, features=(sflux, sflat, sc, no, hfc))

Listing 4: Feature extraction.

In lines 29-34, five different features will be cal-

culated for the whole audio signal. Then, they will all be

plotted (line 37), along with a visualization of the wave-

form, using the method iracema.plot.plot wave-

form trio and features() (Figure 8).

4 Future perspectives

The functionalities of the library will move towards fea-

ture extractors that can provide more meaningful represen-

tations of the information from music performance, from

a musical point of view. The architecture proposed for

Iracema and the feature extractors mentioned in this article

form the basis for the development of such representations,

which will be included in the future stages of development

of the tool.

Good models for note segmentation are essential

for audio content extraction, so this is our major concern
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Figure 6: Spectrogram for the audio file loaded.
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at the time. Although we have already implemented some

basic models that use pitch and energy information to de-

tect note onsets, sometimes they produce some false pos-

itives, therefore, we are working on a better model, using

machine learning techniques, which should be included in

a future release. Such robust note segmentation is essential

for obtaining good articulation descriptors, and we have

already developed a legato index descriptor that relies on

such robustness. We also plan to include, in a future ver-

sion of Iracema, a vibrato descriptor, which was previously

proposed and described in [17].
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