
Comparing Meta-Classifiers for Automatic Music Genre Classification
Vitor Yudi Shinohara 1∗, Juliano Henrique Foleiss1 , Tiago Fernandes Tavares1

1 School of Electrical and Computer Engineering - University of Campinas - Brazil

Albert Einstein, 400 – 13083-852, Campinas, SP

vitorys@dca.fee.unicamp.br, julianofoleiss@utfpr.edu.br, tavares@dca.fee.unicamp.br

Abstract. Automatic music genre classification is the

problem of associating mutually-exclusive labels to audio

tracks. This process fosters the organization of collections

and facilitates searching and marketing music. One ap-

proach for automatic music genre classification is to use

diverse vector representations for each track, and then

classify them individually. After that, a majority voting sys-

tem can be used to infer a single label to the whole track.

In this work, we evaluated the impact of changing the ma-

jority voting system to a meta-classifier. The classification

results with the meta-classifier showed statistically signif-

icant improvements when related to the majority-voting

classifier. This indicates that the higher-level information

used by the meta-classifier might be relevant for automatic

music genre classification.

1 Introduction

Music genres are categories that group songs with same

characteristics, such used instruments, rhythm and music’s

harmony [1]. It can be used to organize music track collec-

tions [2]. Automatic Music Genre Classification (AMGC)

is a Music Information Retrieval task that aims at facilitat-

ing the labeling of tracks according to their genre [1].

AMGC relies on representing music tracks in

a vector space using sound-related features. Some ap-

proaches use a single vector to represent each track,

whereas others use multiple vectors for this representation.

A single-vector representation (SVR) is more compact, but

can result in loss of information due to long-term summa-

rization [3]. Conversely, the multiple-vector representation

(MVR) depends on an additional step for combining the in-

formation derived from each of the vectors [4]. Each vec-

tor in the MVR representation represents different sounds

from the track, leading to a richer representation.

A possible approach for combining information

from MVR is using voting mechanisms, in particular, ma-

jority voting [4, 5]. This method relies on classifying each

frame individually and then selecting the most frequent la-

bel as the one associated to the track. It relies on the idea

that classification errors are less frequent than correct clas-

sifications, hence having multiple attempts for each track

reduces the probability of an overall error.

In this paper, we explore diverse methods for

combining texture classifications into a final prediction per

track. For such, we use the outputs of a texture genre clas-

sifier as the input for a meta-classification stage. This relies

on the hypothesis that some classification errors are typi-

∗Supported by CAPES.

cal in particular genres, thus these errors can be exploited

to improve classification results.

We evaluated three different approaches for com-

bining the classifications in the meta-classification stage.

We considered the case where the output for each texture

is just the predicted class, not the estimated probability for

each class. The baseline is the widely used majority voting

[6, 7, 8, 9, 10]. We evaluated meta-classifiers based on two

different representations. In the first one, the classification

histogram is used as a feature vector, which is yielded to

the meta-classifier. Second, we used the sequence of tex-

ture class predictions as inputs to time-series classifiers.

The approaches were evaluated in four different

datasets. Our results indicate that majority voting is an

effective technique for datasets containing full-length pop-

ular music tracks, and time-series classification is more ac-

curate when textures are typically more uniform through-

out the track. This suggests that the changes in musical

textures throughout a track can be relevant for genre clas-

sification, but they can be hard to model using general-

purpose tools in heterogeneous tracks.

This paper is structured as follows: In Section

2 we introduce the meta-classifier architecture, features

and data sets used in the evaluation. In Section 3, meta-

classifier results are compared with majority voting results.

In Section 4, final considerations are presented.

2 Method

The evaluation system is composed of two stages: texture

classification and meta-classification. The first stage out-

puts a class prediction for each texture of an input music

track. In the second stage, the textures of a music track

are used to build a track representation that is input into

a meta-classifier, which yields a final classification for the

track.

2.1 Music Texture Classifier System

The Music Texture Classifier System (MTCS) outputs a

class prediction for each texture of an input music track.

A texture is a feature vector aggregated over a sequence of

feature vectors calculated over audio frames. Textures aim

to encode audio content of a relatively long (typically 1s

to 5s) audio segment, which is useful for genre classifica-

tion [1]. Figure 1 shows the MTCS architecture. Given

a music track sampled at 44Khz, a 2048-sample Short-

Time Fourier Transform (STFT) is calculated, with 50%

overlap. This yields 23ms frames. Then, a set of hand-

crafted features are calculated for each frame. This fea-

ture set consists of the following features: Spectral Cen-

17th Brazilian Symposium on Computer Music - SBCM 2019 131



Audio Track

Feature Extraction

Classification

Classical RockPop Pop

Texture

Figure 1: Music Texture Classifier System (MTCS)
architecture. It receives an audio file as
input and yields a sequence of label pre-
dictions related to each segment of the
track.

troid, Spectral Rolloff, Spectral Flux, Energy, Zero Cross-

ing Rate [1], Spectral Flatness [11], and the first 20 MFCC

coefficients [12]. The feature vector also consists of the

first and second-order derivatives of each feature. Thus,

each frame-level feature vector has 78 features.

Textures are calculated using the mean and vari-

ance of each feature in every 10 low-level frames, result-

ing in a 10x downsample. This yields a sequence of 156-

dimensional feature vectors.

However, the total number of textures in the train-

ing set can become too large. To make training tractable,

the texture set for each track is further downsampled by se-

lecting k linearly-spaced textures. Since k is a parameter,

it was evaluated as 5, 20 and 40 in our experiments.

Along with the votes for each texture of a track,

the MTCS also yields a final label for each track. This label

is computed by a voting procedure, in which the class with

the most votes is decided as the track label. These results

are used as baseline.

2.2 Meta Classification

This paper explores how the MTCS votes can be combined

via meta-classifiers. The votes were organized in two dif-

ferent representation as input for the meta-classifier: vote

histograms and sequences of votes. Histograms represents

the number of votes for all genres in a specific track. Se-

quences of votes indicate the vote progression along the

track. In other words, histograms disregard the order of

the textures, whereas sequences of votes rely on this infor-

mation.

MTCS Textures Predictions

Histogram
Sequence of

Votes

KNN

SVM

HMM

RNN

LSTM

Figure 2: Histogram and sequence of votes clas-
sification scheme.

2.2.1 Histogram Classification

The left-hand side of Figure 2 shows how histograms are

used in our meta-classification approach. First, texture

votes are obtained from the MTCS for every track in the

dataset. Then, vote histograms are built by computing the

number of votes each class received. These histograms are

used to describe music tracks. The true track labels were

used as target values. Two classifiers were evaluated as

meta-classifiers, The K-Nearest Neighbor (KNN) and the

Support Vector Machine (SVM).

The systems were evaluated using K-fold cross-

validation. To make it easier to compare to the baseline,

the same folds were used to evaluate the histogram meta-

classifiers. Thus, the same training sets were used for train-

ing the meta-classifiers, while the same testing sets were

used for evaluating them.

For hyper-parameter tuning, the training set was

randomly split into a training set (80%) and a validation

set (20%). A grid-search was used for hyper-parameter

tuning. The classifier parameters evaluated are shown in

Table 1.

Table 1: Hyper-parameters evaluated with grid-
search for histogram classifiers.

Classifier Hyper-parameter Range

SVM C { 0.001, 0.01, 0.1, 1, 10, 100 }
SVM Gamma { 0.001, 0.01, 0.1, 1 }
KNN k { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 }

2.2.2 Sequence of Votes Classification

The right-hand side of Figure 2 shows how the sequences

of votes are used for meta-classification. The MTCS out-

puts the votes following the original sequence of the cor-

responding textures in the track. The sequences are then

132 17th Brazilian Symposium on Computer Music - SBCM 2019



used as input to the meta-classifier. Three sequence clas-

sifiers were evaluated with the sequences as input. Hidden

Markov Models (HMM) [13] can be used as classifiers.

A HMM is trained for each target class. Then, test se-

quences are evaluated, and each HMM predicts the prob-

ability it generated the sequence. The target class corre-

sponding to the maximum probability HMM is assigned

to the sequence. Grid-search was used to find the best

hyper-parameter combination on the validation set. Table 2

presents the hyperparameter evaluation values used in our

experiments.

Table 2: HMM Hyper-parameters tuned with grid-
search.

Hyper-Param Tested Values

Number of Hidden States {3, 5, 7, 9}
Covariance Matrix {full, diag}

Number of Iterations {50, 100, 150}

We also evaluated Recurrent Neural Networks as

meta-classifiers. Table 3 presents the architecture used in

our experiments, along with the evaluated parameter val-

ues. Two types of recurrent cells were evaluated: simple

Recurrent Neural Network (RNN) and Long ShortTerm

Memory (LSTM) [14]. The Long Short Term Memory

mitigates the vanishing gradient problem that occurs in tra-

ditional RNNs. This problem is known to get worse as the

sequences get longer.

Table 3: Neural network architecture used in the
experiments.

Layer Type Activation Function Neurons

1 Dense Linear 1

2 RNN / LSTM tanh {20, 30, 40, 50}
3 Dense ReLu {5, 10, 15}
4 Dense Softmax {9, 10, 13}

2.3 Datasets

The datasets used in the experiments are presented in Table

4. These datasets are widely used by the MIR community

and are publicly available. These datasets vary greatly in

terms of music content, label balancing, number of tracks

and track length.

Table 4: Description of evaluation datasets.

Data set # Tracks # Genres Balanced Track Len. Folds

GTZAN 1000 10 Yes 30 s 10

LMD 1300 10 Yes Full 3

HOMBURG 1886 9 No 10 s 10

EXBALLROOM 4180 13 No 30 s 10

The GTZAN dataset [1] is one of the most widely

used datasets in genre recognition research [15]. It con-

sists of 10 western genres, which greatly vary with respect

to spectral patterns. The folds were created randomly.

The HOMBURG dataset [16] presents a challenge for sys-

tems based on texture classification, since the tracks are

only 10s long. The Extended Ballroom dataset (EXBALL-

ROOM) [17] is also challenging for texture classification

systems. Because this dataset is made of ballroom dances,

there are subsets of genres that use the same instrumen-

tation. Thus, time-related features, such as rhythm and

tempo descriptions, are needed in order to achieve good re-

sults. An artist filter [18] was applied to EXBALLROOM

during fold splitting. A subset of the Latin Music Database

(LMD) [19] was also used in the evaluation. This is the

only dataset evaluated that consists of full-length tracks. A

subset of the original dataset was used for artist filtering,

since some genres were largely represented by only a few

artists.

In the next section we present the evaluation re-

sults.

3 Results

In this section we present the classification accuracy for all

the meta-classification approaches presented in this paper.

The results are the average and standard deviation across

all folds. The number of folds varies depending on the

dataset and are shown in Table 4. Statistical significance

was evaluated by the Student’s T-test. Statistical signifi-

cance was evaluated for all meta-classification approaches

when compared to the Majority Vote baseline. A threshold

of 5% was considered for rejecting the null-hypothesis.

Table 5 shows the best results for each classifier in

the four datasets evaluated. Statistically significant results

are shown in bold.

The results from KNN and SVM were similar.

For all results, the difference is not statistically signifi-

cant. KNN is known to be able to perform well in low-

dimensional data. As the largest feature vector had 40 fea-

tures, the dimensionality did not have a big impact on the

KNN results. Furthermore, KNN has a lower training com-

putational cost. Thus, in the evaluated datasets, KNN of-

fers a superior cost/benefit ratio. However, only the SVM

was statistically superior than the majority voting baseline.

Both neural network results were not statistically

superior to the histogram results. This suggests that for

the datasets evaluated, the sequence of the votes is not key

for performance improvement. Similarly to the SVM, both

the RNN and LSTM networks performed better than the

baseline.

The confusion matrix for the RNN metta-

classifier and the HOMBURG dataset is shown in Figure

3. This was the best average result obtained overall for

this dataset (65%± 0.08). Figure 3 shows the confusion

matrix for the majority voting baseline.

Overall, the results of the histogram-based ap-

proaches were similar compared to the majority vote. The

majority voting structure is embedded in cases where the

histogram was correctly classified by majority vote. When

presenting a histogram whose majority vote is correct, the

classifier tends to associate the behavior of the majority

vote. Therefore, the majority vote seems to represent a

lower limit for histogram classification in the evaluated

datasets.

17th Brazilian Symposium on Computer Music - SBCM 2019 133



Table 5: Best results for all meta-classifiers.

Baseline
Proposed Method

Histograms Sequence of Votes

Majority Vote KNN SVM HMM RNN LSTM

GTZAN 0.79± 0.06 0.75± 0.16 0.76± 0.15 0.53± 0.04 0.73± 0.14 0.79± 0.16

LMD 0.82± 0.02 0.81± 0.03 0.82± 0.02 0.69± 0.01 0.72± 0.07 0.75± 0.07

HOMBURG 0.54± 0.03 0.58± 0.05 0.59 ± 0.04 0.53± 0.02 0.65 ± 0.08 0.64 ± 0.07

EXBALLROOM 0.75± 0.02 0.77± 0.05 0.77± 0.05 0.62± 0.05 0.76± 0.04 0.78± 0.04

alt
er

na
tiv

e
bl

ue
s

ele
tro

ni
c

fo
lk/

co
un

try
fu

nk
/so

ul
/r&

b
jaz

z

po
p

ra
p/

hi
ph

op
ro

ck

Predicted Label

alternative

blues

eletronic

folk/country

funk/soul/r&b

jazz

pop

rap/hiphop

rock

Re
al

 L
ab

el

25 5 6 24 0 10 4 3 68

0 50 5 15 0 22 1 6 21

2 6 51 7 0 25 1 12 9

5 4 5 132 1 28 6 5 36

1 2 0 12 0 7 0 11 14

1 10 11 14 0 253 2 8 20

5 2 5 27 1 9 28 6 33

0 0 8 4 0 8 1 273 6

11 9 5 24 1 15 7 7 425
0

80

160

240

320

400

(a) RNN meta-classifier.
alt

er
na

tiv
e

bl
ue

s
ele

tro
ni

c
fo

lk/
co

un
try

fu
nk

/so
ul

/r&
b

jaz
z

po
p

ra
p/

hi
ph

op
ro

ck

Predicted Label

alternative

blues

eletronic

folk/country

funk/soul/r&b

jazz

pop

rap/hiphop

rock

Re
al

 L
ab

el

25 5 5 25 0 14 5 3 63

2 50 2 14 0 18 2 9 23

5 1 31 16 1 31 1 13 14

18 10 5 109 3 27 9 5 36

0 2 0 8 2 6 3 12 13

9 15 15 22 0 219 4 9 26

7 4 5 37 0 13 7 13 29

0 0 9 1 0 8 1 268 13

36 15 8 35 1 25 9 7 368
0

80

160

240

320

(b) Majority Voting baseline.

Figure 3: Confusion matrices for the RNN meta-classifier and the baseline systems in the HOMBURG dataset.

4 Conclusion

Various research on Automatic Music Genre Classification

use the multiple-vector representation to describe tracks.

When only the votes, no probabilities, are available for

each texture, a final track classification is decided by ma-

jority voting. This paper presented two alternative ap-

proaches for combining texture votes into genre predic-

tions. The first method evaluated builds a vote histogram.

This histogram is used to represent the track for the meta-

classifier, maps histograms into final genre decisions. The

second method relies on the sequences of votes for each

track. The sequences are then input into sequence classi-

fiers, which map sequences of votes into genres.

The histogram classifiers tends to have a bet-

ter performance when music textures are more uniform

through time. In contrast, the meta-classifiers based on

sequences of votes obtain better results on data sets in

which musical textures are more heterogeneous. This sug-

gests that LSTM and RNN architectures were effective in

modelling the short-term (close to 10s) sound changes that

characterize textures, but were unable to derive differences

related to musical structure.

Therefore, recurrent neural networks are effective

model dependencies on short, few-seconds scale, whereas

long-term dependencies should be investigated using other

models. The exploration of model behaviors for both of

these time scales is an interesting venue for future work.

In conclusion, the source code from the proposed

meta-classifiers is available at a public GitHub repository1.

Instructions for experiment execution and datasets used are

also included.

5 Acknowledgments

This study was financed in part by the Coordenação de

Aperfeiçoamento de Pessoal de Nivel Superior - Brasil

(CAPES) - Finance Code 001.

References

[1] G. Tzanetakis and P. Cook. Musical genre classification

of audio signals. IEEE Transactions on Speech and Audio

Processing, 10(5):293–302, July 2002.

[2] CBS Interactive. Last.fm, 2002. Accessed: 2019-05-01.

[3] J. Lee and J. Nam. Multi-level and multi-scale feature ag-

gregation using pretrained convolutional neural networks

for music auto-tagging. IEEE Signal Processing Letters,

24(8):1208–1212, Aug 2017.

[4] Tiago Fernandes Tavares and Juliano Foleiss. Automatic

music genre classification in small and ethnic datasets. In

13th International Symposium on Computer Music Multi-

disciplinary Research (CMMR), sep 2017.

[5] Mathieu Lagrange, Grégoire Lafay, Boris Defreville, and

Jean-Julien Aucouturier. The bag-of-frames approach: a

not so sufficient model for urban soundscapes. Journal of

the Acoustical Society of America, 138(5):487–492, Octo-

ber 2015.

1https://github.com/vitorys/MusicGenreMetaClassifier

134 17th Brazilian Symposium on Computer Music - SBCM 2019



[6] Mikael Henaff, Kevin Jarrett, Koray Kavukcuoglu, and

Yann LeCun. Unsupervised learning of sparse features for

scalable audio classification. In 12th Proceedings of the

International Conference on Music Information Retrieval,

2011.

[7] Philippe Hamel, Simon Lemieux, Yoshua Bengio, and

Douglas Eck. Temporal pooling and multiscale learning

for automatic annotation and ranking of music audio. In

12th Proceedings of the International Conference on Mu-

sic Information Retrieval, 2011.

[8] Jan Wülfing and Martin A Riedmiller. Unsupervised learn-

ing of local features for music classification. In 13th Pro-

ceedings of the International Conference on Music Infor-

mation Retrieval, 2012.

[9] Il-Young Jeong and Kyogu Lee. Learning temporal features

using a deep neural network and its application to music

genre classification. In 17th Proceedings of the Interna-

tional Conference on Music Information Retrieval, 2016.

[10] Yandre M.G. Costa, Luiz S. Oliveira, and Carlos N. Silla.

An evaluation of convolutional neural networks for music

classification using spectrograms. Applied Soft Computing,

52:28 – 38, 2017.

[11] S. Dubnov. Generalization of spectral flatness measure

for non-gaussian linear processes. IEEE Signal Processing

Letters, 11(8):698–701, Aug 2004.

[12] M. Hunt, M. Lennig, and P. Mermelstein. Experiments

in syllable-based recognition of continuous speech. In

ICASSP ’80. IEEE International Conference on Acoustics,

Speech, and Signal Processing, volume 5, pages 880–883,

April 1980.

[13] Lawrence R Rabiner and Biing-Hwang Juang. An introduc-

tion to hidden markov models. ieee assp magazine, 3(1):4–

16, 1986.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural computation, 9:1735–80, 12 1997.

[15] Bob L Sturm. A survey of evaluation in music genre recog-

nition. In International Workshop on Adaptive Multimedia

Retrieval, pages 29–66. Springer, 2012.

[16] Helge Homburg, Ingo Mierswa, Bülent Möller, Katharina

Morik, and Michael Wurst. A benchmark dataset for audio

classification and clustering. pages 528–531, 01 2005.

[17] Helge Homburg, Ingo Mierswa, Bülent Möller, Katharina

Morik, and Michael Wurst. A benchmark dataset for audio

classification and clustering. pages 528–531, 01 2005.

[18] Elias Pampalk, Arthur Flexer, and Gerhard Widmer. Im-

provements of audio-based music similarity and genre clas-

sificaton. In Proceedings of the 6th International Confer-

ence on Music Information Retrieval, 2005.

[19] Carlos Silla, Alessandro Koerich, and Celso Kaestner. The

latin music database. pages 451–456, 01 2008.

17th Brazilian Symposium on Computer Music - SBCM 2019 135


