
Prototyping web instruments with Mosaicode
André Lucas Nascimento Gomes , Frederico Ribeiro Resende ,

Luan Luiz Gonçalves , Flávio Luiz Schiavoni

1 Arts Lab in Interfaces, Computers, and Everything Else - ALICE

Federal University of São João del-Rei – UFSJ

São João del-Rei - MG - Brazil

fredribeiro97@gmail.com,andgomes95@gmail.com

luanlg.cco@gmail.com,fls@ufsj.edu.br

Abstract. Many HTML 5 features enable you to build au-

dio applications for web browsers, simplifying the distribu-

tion of these applications, and turning any computer, mo-

bile, and portable device into a digital musical instrument.

Developing such applications is not an easy task for lay-

programmers or non-programmers and may require some

effort by musicians and artists to encode audio applica-

tions based on HTML5 technologies and APIs. In order

to simplify this task, this paper presents the Mosaicode,

a Visual programming environment that enables the de-

velopment of Digital Musical Instruments using the visual

programming paradigm. Applications can be developed

in the Mosaicode from diagrams – blocks, which encap-

sulate basic programming functions, and connections, to

exchange information among the blocks. The Mosaicode,

by having the functionality of generating, compiling and

executing codes, can be used to quickly prototype musical

instruments, and make it easy to use for beginners looking

for learn programming and expert developers who need to

optimize the construction of musical applications.

1 Introduction

Recently, with the emergence of HTML 5 and the Web Au-

dio API, the web browser became a feasible environment

to host a DMI (Digital Musical Instrument). Beyond the

acclaimed Web Audio API, HTML 5 brought several oth-

ers technologies useful to DMIs development like the Web

MIDI API, WebRTC, Gamepad API, Websockets, SVG

Canvas, WebGL, new tags and elements. Together, all

these technologies can be a really powerful framework to

develop new DMIs. In order to merge the technologies be-

hind HTML 5, unleashing the development of DMIs for the

web, this paper presents the Mosaicode, a Visual Program-

ming Environment that can help novices and experts pro-

grammers in implementing and prototyping applications

on the field of Digital Arts – better detailed in Section 3.

Several programming tools and languages already

support the development of DMIs, including a technologi-

cal apparatus to help programmers, non-programmers and

lay-programmers to perform this task. A non-exhaustive

list of tools and languages to develop new DMIs is pre-

sented in Section 2.

Different from other related tools, the Mosaicode

is an application to generate code and complete applica-

tions using the Visual Programming paradigm to the Digi-

tal Arts domain.

This tool can be complemented by extensions, al-

lowing one to add resources that define a Visual Program-

ming Language (VPL) for developing applications for new

domains. Among all extensions of Mosaicode, there is an

extension to develop Web Art applications that supports

the creation of DMIs. This extension has several blocks of

code to access physical and logical inputs, audio sources

and effects, MIDI devices, HTML elements and more.

The development of DMIs using Mosaicode is presented

in Section 4, including examples of DMIs developed in the

environment.

The Mosaicode has already being used as a sup-

port tool to the course “Introduction to Computer Music”

on the Computer Science Department at the Federal Uni-

versity of São João del-Rei – UFSJ. The students devel-

oped DMIs in an easy way, just by dragging and connect-

ing blocks, focusing only on the concept of DMIs devel-

opment. It was really interesting to use the Web Art ex-

tension to this purpose. Mosaicode also was used to create

instruments to a live performance with the audience partic-

ipation developed in our research group. This experiences

and discussion about the use of Mosaicode is presented in

Section 5. At the end, Section 6 presents some final con-

siderations.

2 Related works

Currently there are several musical programming lan-

guages and tools, with different aspects and paradigms, to

help the creation of new DMIs.

Pure Data1 (a.k.a. Pd) is visual programming en-

vironment developed to create real time sound and music

projects. This open source tool was developed by Miller

Puckette in the 90’s [1]. Although its main focus on audio

manipulation, Pd enables to work with data from different

sources that can be treated in an interconnected way. As a

consequence, it facilitates the coupling of audio, video and

MIDI applications, among others, that the tool supports.

Max/MSP 2 is, like Pd, a visual programming en-

vironment for image, sound and video processing [2], com-

monly used by artists, performers and composers to create

their applications. Different from Pd, Max is a proprietary

software.

1Available on http://puredata.info.
2Project Website: https://cycling74.com/products/

max.

114 17th Brazilian Symposium on Computer Music - SBCM 2019

EyesWeb3 is another visual development envi-

ronment. This is specifically an open-source programming

tool for image, sound and video, with an emphasis on ges-

ture analysis and body movement [3]. A major advantage

of it is the number of input devices supported, such as cam-

eras for image capture, video game accessories like Kinect

and Wii controls and multi-channel audio.

ISADORA4 is an interactive tool for media

(sound and video) that is widely dedicated to artists and

performers looking for the creation of pieces and per-

formances by iterating image and sound, allowing real-

time processing and customization [4]. This environment

has advantages such as appearance and friendly interface,

along with the practicality of visual programming; in addi-

tion, it is proprietary software.

Processing5 is an open-source textual program-

ming language for the Digital Art domain developed by

the MIT Media Lab [5]. This language is used in a didactic

way for teaching programming to facilitate, captivate and

bring up new students to the area of software development.

CodeCircle6 is a software that provides a real-

time, collaborative and social coding by means a web pro-

totype environment for musically expressive instrument

development. The user can implement applications using a

specific code, including HTML, CSS and JavaScript by the

web interface that consists of the code editor and the result-

ing web. For generate sound in the browser and to imple-

ment interactive machine learning, this software uses the

MaxiLib and RapidLib libraries, respectively. Expressive

interactions are designed using “programming by demon-

stration” [6].

JythonMusic7 supports computer-assisted com-

position by a free and open source environment based on

Python for interactive musical experiences and application

development. The use of the Jython programming lan-

guage enable to work with Processing, Max/MSP, Pure-

Data and other environments/languages, and also giving

access to Java API and Java based libraries. It’s allowed

to the user to interact with external devices such as MIDI,

manipulate images and also create graphical interfaces [7].

FAUST8 is a functional programming language

for sound synthesis and audio processing. A code de-

veloped in FAUST can be translated to a wide range

of non-domain specific languages such as C++, C, Java,

JavaScript, LLVM bit code, and WebAssembly[8]. There

is a web platform called “Faust Playground” designed to

enable children to learn basic audio programming, provid-

ing graphics resources to create DMIs.

Certainly, all these related tools have some differ-

ence with the tool presented in this paper and all of them

are more mature and solid tools to create audio and music

3Project Website: http://www.infomus.org/.
4Project Website: https://troikatronix.com/.
5Project Website: https://processing.org/.
6Project Website: https://codecircle.gold.ac.uk/.
7Project Website: http://jythonmusic.org
8Available on https://faust.grame.fr/

applications. Some of them are also visual, some are code

generators. The most important to say about all these tools

is that they all inspired our team to develop our program-

ming environment and there are much more to learn about

them to evolve our tool.

3 Mosaicode

Mosaicode [9] is a visual programming environment fo-

cused on the development of applications in the specific

domains of Digital Arts. This programming environment,

depicted in Figure 1, is a Desktop application developed

in Python that provides elements to create applications for

Digital Art domain involving Computer Science topics like

Artificial Intelligence, Virtual Reality, Computer Graphics,

Computer Vision and Computer Music.

This environment is an open-source code genera-

tion tool that aims to unleash development of applications

and fast prototyping. Thus, it can be quick and simple for

those who do not have the programming skill to create an

application and for expert programmer to fast prototype, to

fast change code – can quickly test new code settings – and

also to change/optimize the application directly by the gen-

erated code. Based on this, the Mosaicode can be used to

a fast start a project generating the code of a working pro-

totype. The simplicity of the environment is based on the

Visual Programming paradigm, used by several other re-

lated tools and very common on Digital Arts domain. An

application in the Mosaicode is created dragging, dropping

and connecting blocks.

A Block is the most basic unit in the environment

and it is responsible to perform minimal, atomic and spe-

cific activity within a domain. A Block can have different

behaviours and it can be set up by the Block’s properties.

Besides, a Property can be set up statically or dynami-

cally. A static property is a parameter that influences the

Block’s execution and that can be modified in program-

ming time, however, it is constant during application run-

ning. Figure 1.C presents the side bar to set up a Block’s

static properties in the environment.

A dynamic property uses a input Port of the

Block to change the Block’s settings and it is done at run

time. A Block can also have output ports, to send values

to other blocks. Thus, using these typed ports and connec-

tions, is possible to exchange values between blocks. A set

of these blocks connected together is called Diagram.

A Diagram, like presented in Figure 1.D, is used

to generate an application code based on a Code Template,

merging code snippets and creating the final application.

By default, when there is a data stream on the in-

put ports, these values override the static properties associ-

ated with each input port. Thus, when connecting a block,

which outputs information from a sensor, to the input of a

block that performs an arithmetic operation, for instance,

the arithmetic block will no longer use the value assigned

in the static property, it will use the sensor values to per-

form the operation.

17th Brazilian Symposium on Computer Music - SBCM 2019 115

Figure 1: It shows the graphical interface of the Mosaicode.

When implementing a block diagram in Mo-

saicode, users do not have to worry about remind program-

ming languages commands and syntax, they just need to be

aware of the specific domain to know which blocks must

be used and how to connect them to generate the desired

application. Once a user acquires knowledge about the do-

main, it becomes easier to open the source code to study

it and to learn how the application is implemented using a

particular programming language.

3.1 Extending the environment

A set of blocks, ports, and code templates composes a

Mosaicode extension. An extension can generate source

code/applications for a particular programming language

and a specific domain.

Currently, Mosaicode has some extensions to

generate application code in C/C++ language for subjects

like Sound Design, Digital Image Processing, Image Syn-

thesis, GUI, Joystick Control and Computer Vision. Each

one of these extension use an external library to support

the application development, such as OpenCV for Com-

puter Vision and Digital Image Processing [10], GTK for

GUI creation, openGL to image synthesis and the PortAu-

dio for Sound Design [11].

This environment also has an extension for Web

Art development that generates HTML 5 + CSS +

JavaScript application code. This extension is explained

in the next section, discussing about how it can be used to

create DMIs.

4 DMI development with Mosaicode

To present the DMI development with Mosaicode, we are

adopting a common vision that a DMI can be splitted in

three parts: the input, that captures gestures of the musi-

cian and involves the physical and virtual interactions of

the user; the output, responsible for synthesizing the sound

of the instrument and give other feedback to the user like

visual and haptic; and the mapping, a strategy to inter-

connect the input with the output. Figure 2 presents this

schematic, as will used in next Sections.

4.1 User Input

User input is intended to receive data streams referring to

user interactions with the application. User inputs can be

performed by physical devices, like sensors, or graphical

interfaces components, like buttons, input text boxes and

sliders. A computer mouse and keyboard are common de-

vices that can be used to interact with applications and

that can use GUI elements to intermediate this interaction.

Beyond GUI elements, the JavaScript programming lan-

guage easily provides resources to capture mouse events

like click and movements and keyboard events like key

press and release. Other input devices connected to the

computer can also be accessed using HTML 5, specially

when using smartphones and tablets. Using HTML5, the

GPS position can be reached using the Geolocation, Joy-

stick and game devices can be accessed with the GamePad

API and MIDI devices can be accessed by the Web MIDI

API (physical or virtual). Other sensors and physical de-

vices like touch screen, gyroscope and accelerometers can

also be accessed and used as user input using the JavaScript

language. Javascript also allows to access the camera and

microphone using the WebRTC API in real-time [12, 13].

GUIs designed to provide communication be-

tween users and applications (user input) are composed of

HTML 5 elements. These elements can be: text fields, but-

tons, slider controls, number field, radio, check and others.

116 17th Brazilian Symposium on Computer Music - SBCM 2019

Sensors

Controls

Cameras

Another devices

Physical devices

GUI elements

Logical devices

User input

Audio source Audio FX Signal
arithmetics

Other inputs

Random

Date

Mapping

Output

Synthesizer Other feedback

Arithmetic operations Logical operations Conversions of
values

Visual feedback Haptic feedback

Time

Figure 2: Basic structure of DMI.

GUIs are interesting to control DMIs for their accessibility,

not requiring the purchase of other devices to play them.

Table 1: List of Mosaicode’s input blocks to gen-
erate Web Audio applications in HTML
5/JavaScript language.

Categories Blocks

Form Button, Check, Number, Range, Select, Text.

Input Device

Date, Device Orientation, Hour, Keyboard,

Microphone, Mouse Click, Mouse Position,

Orientation Change, Up Keyboard.

Interface Increment, Metronome, Random.

MIDI MIDI in

Sound Microphone

In our Web Art extension, we have joined the

APIs resources and made them into Mosaicode blocks with

the same functionality, enabling many ways for the appli-

cation to receive data by input user. This extension blocks

were organized by categories to make it easier to find the

desired features for developing applications, as presented

in Table 1

4.2 Other Inputs

There are other sensors and values, available in devices,

that can be used as input in DMI development, but that are

not controlled by user actions. These devices are the com-

puter clock, providing date and time, and random values,

for instance. This input can be used to add some stochas-

tic parameters to DMIs, schedule events, delay events and

create sequencers. All these functionalities are native in

JavaScript programming and also became blocks to our en-

vironment.

We also implemented Numbers and other con-

stants Blocks to use it as value input in diagrams. It is

very useful to set up fixed values and normally used to set

up initial values to run the application.

4.3 Synthesizer

The synthesizer is the voice of the DMI. Normally, a syn-

thesizer can implement or be inspired by one or more clas-

sic algorithms of audio synthesis like AM, FM, PM, addi-

tive, subtractive, physical modelling, and others.

The Web Audio API provides several elements to

create a synthesizer like Oscillators, Gain, Filters, Audio

Spacialization, and also audio FX like delay, reverb, cho-

rus, phaser, flanger, distortion, filters and others. Thus, to

implement a synthesizer with this API is really simple and

depends on computer music knowledge of how to create

synths. All these elements were implemented as Blocks in

the Mosaicode environment.

Some audio operations that are not available in

Web Audio API but are important to create synthesiz-

ers were implemented using the Web Audio ScriptProces-

sorNode. Arithmetic operations to audio signals, White

17th Brazilian Symposium on Computer Music - SBCM 2019 117

Noise and ADSR envelope are examples of resources im-

plemented to Mosaicode as Blocks using this feature of the

Web Audio API. A not complete list of the Blocks to create

a sound synthesizer is presented in Table 2.

Table 2: List of Mosaicode’s blocks to gener-
ate web audio applications in HTML
5/JavaScript language.

Categories Blocks

Audio Filter

Allpass, Bandpass, Highpass, Highshelf,

Lowpass, Lowshelf, Notch, Peaking.

Sound

Add Sound, Add Sound Float, ADSR, Chan-

nel Merge, Delay, Distortion, Divide Sound,

Gain, HRTF, Multiply Sound, Multiply Sound

Float, Oscillator, Playback, Speaker, Subtract

Sound, Subtract Sound Float, White Noise.

4.4 Other Feedback

A DMI can also use another outputs to help the user to un-

derstand its behavior. Our first explored output is a visual

feedback, the resource to print a value on the web page;

maybe it is the most used Block to debug code. To give

visual feedback to user and to create a nice design it is also

possible to change the background color of the page and

other page elements, like the page title.

Some more interesting visual feedback were cre-

ated using the HTML 5 Canvas element to draw represen-

tations of audio signals. There are Blocks to show a fre-

quency bar chart, waveform and audio spectrum. These

blocks also use the WebGL API, which supports rendering

of 2D/3D graphics in real-time HTML Canvas elements,

enabling analysis of audio signals at runtime [14].

Another possible output is to create and MIDI vir-

tual device to output values from the web application to a

local synthesizer, logical or physical, using the WebMIDI

API.

We can use another two interesting resources to

create feedback: the webcam flash light, accessible by We-

bRTC and the vibracall, using the Vibration API. Using

the flash provides visual feedback such as graphics, back-

ground color and page title, and the vibrating alert provides

tactile feedback.

All these possibilities are implemented in our ex-

tension and available in Blocks, like present in Table 3.

Table 3: List of Mosaicode’s blocks to give feed-
back to user.

Categories Blocks

HTML Title, background color, print

Canvas Frequency Bar, Print, Sine Wave, Spec-

togram

MIDI MIDI Output

Mobile Output Flash, Vibracall

4.5 Mapping

Although mapping does not uses to be a resource that can

became a block , during the implementation of syntheses

and audio effects, sometimes it became necessary to map

values by adjusting them to vary in a certain range. For

example, the position of a mouse on the screen, ranging

from 0 to 1024, can be mapped to a gain, ranging from 0

to 1. Thus, it became necessary to have some blocks of

mathematical and other operations to be used to convert

values from the input to the output.

We created a set of Blocks to perform operations

between float numbers, logical operations and to decre-

ment and increment values. There are also a set of conver-

sion blocks provided in Mosaicode to strip MIDI values

and to convert MIDI notes to frequency, to convert from

float to RGB, RGB to Float, Float to Boolean and Float to

Char.

These elements are delegated by the mapping unit

as parameters of DMI synthesis. In this way, joystick but-

tons, hand mapping with cameras and accelerometers and

cell phone gyroscopes can be used as inputs to the synthe-

sizing, controlling elements such as note duration and fre-

quency, filter frequency, general gain and noise gain. Ta-

ble 4 presents some Blocks that can be used to mapping

values.

Table 4: List of Mosaicode’s mapping blocks to
generate web audio applications in HTML
5/JavaScript language.

Categories Blocks

Logic

Equals To, Greater Than, Greater Than Or

Equals, Less Than, Less Than Or Equals, Not

Equals To.

Arithmetics

Add Float, Divide Float, Max Float, Modulos,

Multiply Float, Subtract Float.

Conversion Bool To Float, Char To Float, RGB.

MIDI MIDI To Frequency, Strip MIDI.

4.6 Examples

An example of a FM synthesizer developed in Mosaicode

is presented in Figure 3. In this example, the carrier oscil-

lator (sine wave format) has as initial frequency value 440

Hz and the frequeency of the modulator oscillator in 4000

Hz.

The values generated by the oscillators range

from -1 to 1. To change this value to a range of 220 to

2220, we added the value 1 to the oscillator output, mak-

ing it vary in the interval from 0 to 2. Then we multiplied it

by 1000 doing it vary from 0 to 2000 and finally we added

the value 220 to vary the value from 220 to 2220. Thus,

we have a periodic frequency change in the range of 220

Hz to 2220 Hz occurring 4000 times per second, which

determines the carrier oscillator frequency over that time.

The carrier oscillator output was directed to the Sine Wave

block, to be drawn in the waveform as shown on Figure 4,

and also directed to the Speaker block.

Another example is presented in Figure 5a. This

DMI uses a ADSR envelope receiving a white noise as

input and being triggered by a button. Finally, the enve-

lope output is connected to a Speaker and a frequency bar.

118 17th Brazilian Symposium on Computer Music - SBCM 2019

Caption:
User Input
Synthesizer
Mapping
DMI Feedback

Figure 3: FM synthesis using the Mosaicode-
javascript-webaudio extension.

Figure 4: Visualization of waveform generated by
the FM Synthesis on the example of Fig-
ure 3.

So, when running the application, we have a button on the

web interface (5b), the frequency bar chart, which varies

when playing the instrument, and we can hear the instru-

ment sound.

These examples use numeric fields to control syn-

thesizer parameters and a button to dispatch the ADSR en-

velope. It is possible to replace this fields with any other

user input block just changing it in the diagram or dispatch

the white noise’s envelope with a metronome, for instance.

5 Discussion

We used Mosaicode as a support tool to implement and

prototype DMIs in a Computer Science course called “In-

troduction to Computer Music” [15] that had the main au-

dience undergrad students on Computer Science field. In

these classes we noticed how important is to have a de-

velopment environment that enables rapid prototyping and

creation, also to initiate instrument designs. Often, a syn-

thesizer is born from experimentation with signal arith-

metic, testing and experimenting with settings and param-

eters. The same can occur with the choice of interfaces or

mappings.

At least during prototyping or in the classroom,

constructing a DMI resulted in ephemeral codes, an exper-

(a)

(b)

Figure 5: Diagram with White Noise controlled by
an ADSR envelope, with outputs on a
Speaker and a Freq Bar, shown in (b).

imentation that can be reused, but that also can be simply

discarded due to this ephemerality. Throwing work away

may not be a problem when we know that doing it again

can be simple and even fun.

We also used it in the context of DMI develop-

ment, with audience participation in a multimedia perfor-

mance called Chaos das 5. In this performance, the au-

dience could access web instruments and take part of the

soundscape of the performance. The development of these

instruments by our research group was made improvis-

ing and playing sounds, sometimes totally free, based on

experimentation and trials. We used pair programming

including students with different levels of knowledge in

Computer Music and synthesis algorithms. However, after

a few meetings, all students could already create sounds

and develop DMIs, even without a formal course in Music

Computing.

6 Conclusion

This paper presented the Mosaicode, a visual programming

environment for the domain of Digital Arts that here was

explored to create DMIs using a Web Art extension. This

extension, based on several APIs from the HTML5, can be

used to create really interesting and multi-platform DMIs

that would be hard to code using JavaScript directly. The

development of this extension on Mosaicode can offer the

power of HTML 5 by the means of a visual programming

environment.

It can bring several advantages, such as rapid pro-

totyping, as well as practicality, easy experimentation, tri-

als and combination of blocks, generating completely dif-

ferent applications. It is also possible to use it as a support

tool to teach lay programmers and artists to develop their

applications without requiring learning a textual program-

ming language. For this, Mosaicode offers to the user a

17th Brazilian Symposium on Computer Music - SBCM 2019 119

wide range of possibilities and different combinations of

Blocks.

For future work, we intend to maintain the devel-

oped extension and to review the set of blocks, adding new

features whenever possible to make the extension more

complete. In addition, an extension for MIDI controls is

being developed, with various input types available to dif-

ferent media, using the C language. Initially, the MIDI

category of audio synthesis extensions is scarce and lim-

ited, we have the intention of merging the extensions of the

same programming language in order to rapidly expand the

possibilities of development, allowing the user to integrate

different domains in a simple way.

When creating DMIs it was important to think

about communication interfaces that offer a good musical

expression. For this, we implemented blocks that allow

the use of external devices to control the synthesizers with

a certain degree of complexity, trying to reach a more ex-

pressive DMI [16].

7 Acknowledgments

Authors would like to thanks to all Arts Lab in Interfaces,

Computers, and Everything Else (ALICE) members that

made this research and development possible. The authors

would like also to thank the support of the funding agencies

CNPq, FAPEMIG, and also the PROAE/PROPE/UFSJ for

the institutional support.

References

[1] Miller S Puckette et al. Pure data. In ICMC, 1997.

[2] Matthew Wright, Richard Dudas, Sami Khoury, Raymond

Wang, and David Zicarelli. Supporting the sound descrip-

tion interchange format in the max/msp environment. In

ICMC, 1999.

[3] Antonio Camurri, Shuji Hashimoto, Matteo Ricchetti, An-

drea Ricci, Kenji Suzuki, Riccardo Trocca, and Gualtiero

Volpe. Eyesweb: Toward gesture and affect recognition

in interactive dance and music systems. Computer Music

Journal, 24(1):57–69, 2000.

[4] TroikaTronix. Isadora. https://troikatronix.

com/. Acessado em: 2018-07-29.

[5] Casey Reas and Ben Fry. Processing: a programming

handbook for visual designers and artists. Mit Press, 2007.

[6] Michael Zbyszynski, Mick Grierson, Matthew Yee-King,

et al. Rapid prototyping of new instruments with codecir-

cle. In Proceedings of the international conference on new

interfaces for musical expression. NIME, 2017.

[7] Bill Manaris, Blake Stevens, and Andrew R Brown. Jython-

music: An environment for teaching algorithmic music

composition, dynamic coding and musical performativity.

Journal of Music, Technology & Education, 9(1):33–56,

2016.

[8] Yann Orlarey, Dominique Fober, and Stéphane Letz. Faust:

an efficient functional approach to dsp programming. New

Computational Paradigms for Computer Music, 290:14,

2009.

[9] Flávio Luiz Schiavoni, Luan Luiz Gonçalves, and

José Mauro da Silva Sandy. Mosaicode and the visual pro-

gramming of web application for music and multimedia.

Revista Música Hodie, 18(1):132–146.

[10] Gary Bradski and Adrian Kaehler. Opencv. Dr. Dobb’s

journal of software tools, 3, 2000.

[11] Ross Bencina and Phil Burk. Portaudio-an open source

cross platform audio api. In ICMC, 2001.

[12] Hongchan Choi and Jonathan Berger. Waax: Web audio

api extension. In NIME, pages 499–502, 2013.

[13] David B Ramsay and Joseph A Paradiso. Grouploop: a

collaborative, network-enabled audio feedback instrument.

In NIME, pages 251–254, 2015.

[14] John Congote, Alvaro Segura, Luis Kabongo, Aitor

Moreno, Jorge Posada, and Oscar Ruiz. Interactive visu-

alization of volumetric data with webgl in real-time. In

Proceedings of the 16th International Conference on 3D

Web Technology, pages 137–146. ACM, 2011.

[15] Flávio Luiz Schiavoni Schiavoni, Thiago Thadeu Souto

Cardoso, André Lucas Nascimento Gomes, Fred-

erico Ribeiro Resende, and José Mauro da Silva Sandy.

Utilização do ambiente mosaicode como ferramenta de

apoio para o ensino de computação musical. In Pro-

ceedings of 8th workshop on ubiquitous music (UbiMus),

2018.

[16] Christopher Dobrian and Daniel Koppelman. The’e’in

nime: musical expression with new computer interfaces.

In Proceedings of the 2006 conference on New interfaces

for musical expression, pages 277–282. IRCAM—Centre

Pompidou, 2006.

120 17th Brazilian Symposium on Computer Music - SBCM 2019

