
Combining Effects in a Music Programming Language based on

Patterns
André Rauber Du Bois1∗, Rodrigo Geraldo Ribeiro2

1Programa de Pós-Graduação em Computação

Universidade Federal de Pelotas, Pelotas-RS, Brazil

2Programa de Pós-Graduação em Ciência da Computação

Universidade Federal de Ouro Preto, Ouro Preto - MG, Brazil

dubois@inf.ufpel.edu.br,rodrigo@decsi.ufop.br

Abstract. HMusic is a domain specific language based on

music patterns that can be used to write music and live

coding. The main abstractions provided by the language

are patterns and tracks. Code written in HMusic looks like

patterns and multi-tracks available in music sequencers,

drum machines and DAWs. HMusic provides primitives

to design and combine patterns generating new patterns.

The objective of this paper is to extend the original de-

sign of HMusic to allow effects on tracks. We describe

new abstractions to add effects on individual tracks and

in groups of tracks, and how they influence the combina-

tors for track composition and multiplication. HMusic al-

lows the live coding of music and, as it is embedded in the

Haskell functional programming language, programmers

can write functions to manipulate effects on the fly. The

current implementation of the language is compiled into

Sonic Pi [1], and we describe how the compiler’s back-end

was modified to support the new abstractions for effects.

HMusic can be and can be downloaded from [2].

1 Introduction

Computer music is usually associated with the use of soft-

ware applications to create music, but on the other hand,

there is a growing interest in programming languages that

let artists write software as an expression of art. There are

a number of programming languages that allow artists to

write music, e.g., CSound [3], Max [4, 5], Pure Data [6],

Supercollider [7], Chuck [8], FAUST [9], to name a few.

Besides writing songs, all these languages also allow the

live coding of music. Live coding is the idea of writing

programs that represent music while these programs are

still running, and changes in the program affect the music

being played without breaks in the output [10].

HMusic [11] is a Domain Specific language for

music programming and live coding. HMusic is based on

the abstraction of patterns and tracks where the code looks

very similar to the grids available in sequencers, drum ma-

chines and DAWs. The difference is that these abstractions

have an inductive definition, hence programmers can write

functions that manipulate these tracks in real time. As the

DSL is embedded in Haskell, it is possible to use all the

power of functional programming in our benefit to define

new abstractions over patterns of songs.

This paper discusses new abstractions for HMusic

∗Supported by CAPES.

to deal with effects. More precisely, the contributions of

this paper are as follows:

• We extend the abstractions of HMusic to incor-

porate effects. Basically, two new types of tracks

are added: a track that takes a list of effects that

are applied in order to the track’s pattern, and a

master track that applies a set of effects to a multi-

track (Section 3.1)

• HMusic provides two operators for combining

multi-tracks, a sum operator that takes two multi-

tracks and generates a new track that plays the

two multi-tracks one after the other, and a mul-

tiplication operator that takes an integer n and a

multi-track t and generates a track that is n times

t. We extend the behaviour of these operations

to deal with effects and explain the semantics of

track composition in the presence of effects (Sec-

tion 3.3)

• We show how the new abstractions for effects can

be used during a live coding session (Section 4)

• We describe how the new abstractions presented

in this paper can be compiled into Sonic Pi code

(Section 4)

To understand the paper the reader needs no pre-

vious knowledge of Haskell, although some knowledge of

functional programming and recursive definitions would

help. We try to introduce the concepts and syntax of

Haskell needed to understand the paper as we go along.

The paper is organized as follows. First we de-

scribe HMusic and the main constructors for pattern (Sec-

tion 2.1) and track (Section 2.2) design and their basic

operations. Next, the extensions for effects are explained

(Section 3.1). In Section 3.3, we examine the semantics of

track composition, i.e., combining different multi-tracks to

form a new track, in the presence of effects. Live coding

with effects is explained in Section 4. The compilation of

HMusic with effects into Sonic Pi is described in Section

5. Finally, related work, conclusions and future work are

discussed.

2 HMusic

2.1 HMusic Patterns

HMusic is an algebra (i.e., a set and the respective func-

tions on this set) for designing music patterns. The set of

106 17th Brazilian Symposium on Computer Music - SBCM 2019

all music patterns can be described inductively as an alge-

braic data type in Haskell:

data MPattern = X | O

| MPattern :| MPattern

The word data creates a new data type, in this

case, MPattern. This definition says that a pattern can

be either playing a sample (X), a rest (O), or a sequential

composition of patterns using the operator (:|), that takes

as arguments two music patterns and returns a new pattern.

As an example, we can define two 4/4 drum pat-

terns, one with a hit in the 1st beat called kick and another

that hits in the 3rd called snare.

kick :: MPattern

kick = X :| O :| O :| O

snare :: MPattern

snare = O :| O :| X :| O

The symbol (::) is used for type definition in

Haskell, and can be read as has type, e.g. kick has type

MPattern.

As MPattern is a recursive data type, it is pos-

sible to write recursive Haskell functions that operate on

patterns. For example, usually a certain pattern is repeated

many times in a song, and a repeat operator (.*) for pat-

terns can be defined as follows:

(.*) :: Int -> MPattern

-> MPattern

1 .* p = p

n .* p = p :| (n-1) .* p

The repeat operator takes as arguments an integer

n and a pattern p, and returns a pattern that is a composi-

tion of n times the pattern p. As can be seen in the previous

example, the composition operator (:|) can combine drum

patterns of any size and shape, e.g.:

hihatVerse :: MPattern

hihatVerse = 8 .* (X :| O :| X :| O)

hihatChorus :: MPattern

hihatChorus = 4 .* (X :| X :| X :| X)

hihatSong :: MPattern

hihatSong = hihatVerse :|

hihatChorus :|

hihatVerse :|

hihatChorus

or simply:

hihatSong :: MPattern

hihatSong = 2 .* (hihatVerse :|

hihatChorus)

In order to make any sound, a pattern must be as-

sociated to an instrument hence generating a Track, as

explained in the next Section.

2.2 HMusic Tracks

A track is the HMusic abstraction that associates an instru-

ment to a pattern. The Track data type is also defined as

an algebraic type in Haskell:

data Track =

MakeTrack Instrument MPattern

| Track :|| Track

type Instrument = String

A simple track can be created with the

MakeTrack constructor, which associates an

Instrument to a MPattern. A Track can also

be the parallel composition of two tracks, which can be

obtained with the :|| operator. Instrument is a type

synonym for Strings. An instrument can be any audio

file accessible by the Sonic Pi environment (see Section 5).

Now, we can use the previously defined patterns

kick and snare to create tracks:

kickTrack :: Track

kickTrack = MakeTrack "BassDrum" kick

snareTrack :: Track

snareTrack =

MakeTrack "AcousticSnare" snare

and also multi-tracks:

rockMTrack :: Track

rockMTrack =

kickTrack :||

snareTrack :||

MakeTrack "ClosedHiHat" (X:|X:|X:|X) :||

MakeTrack "GuitarSample" X

3 Effects in HMusic

In this paper, the abstractions of HMusic are extended to

incorporate effects. The new abstractions allow to add ef-

fects in individual tracks (Section 3.1) and in a group of

tracks (Section 3.2). The use of effects in live coding is

discussed in Section 4.

3.1 Effects on Tracks

To incorporate effects on tracks, the MTrack data type

was extend with a new type of track:

data MTrack = (...)

| MakeTrackE Instrument [Effect] MPattern

Besides Instruments these tracks can take as

argument a list of effects that are applied in order. In the

current implementation, effects available in Sonic Pi can

be loaded in tracks (see Section 5), like changing the rate

of samples, reverb, amp, etc:

data Effect = Reverb Float | Amp Float

| Attack Float | Rate Float

| Sustain Float | (...)

For example, we can now write a drum multi-

track which adds a bit of reverb on the snare:

17th Brazilian Symposium on Computer Music - SBCM 2019 107

drums :: MTrack

drums =

MakeTrackE "snare" [Reverb 0.3] snare :||

MakeTrack "kick" kick :||

MakeTrack "hihat" (X:|X:|X:|X)

As the MTrack data type has an inductive def-

inition, we can write recursive functions that manipulate

effects and tracks (e.g., add, remove, modify) while music

is being played, as described in Section 4.

3.2 Effects on Groups of Tracks

HMusic was also extend to support the addition of effects

in a group of tracks:

data MTrack = (...)

| Master [Effect] MTrack

The Master track takes two arguments, a list of

effects and an MTrack, which is possibly a multi-track,

and ads these effects in order to the MTrack.

For example, we can now add effects to the whole

drums track defined previously:

drumsE :: MTrack

drumsE = Master [Amp 0.2, Sustain 0.4] drums

Since the snare track already has a reverb applied

to it, when the Master track is added, the effects applied

to the snare are now Amp, followed by Sustain, followed

by Reverb.

3.3 Effects and Track Composition

The :|| operator, discussed previously, allows the paral-

lel composition of Tracks, i.e., adding an extra track to

a multi-track song. But what if we want to combine tracks

in sequence, e.g., we have different multi-tracks for the in-

troduction, verse and chorus, and want to combine them in

sequence to form a complete song?

If we reason that different multi-tracks represent
different parts of a song, when we combine two multi-
tracks, we want the second multi-track to start playing only
when the first one finished. Hence, when combining a
multi-track, its size is always the size of its largest pat-
tern. Thus, when combining tracks we assume that smaller
patterns have rest beats at their end, meaning that all pat-
terns are assumed to have the size of the largest pattern in a
multi-track. We can define this concepts formally with the
following recursive functions:

lengthMP :: MPattern -> Int

lengthMP (x:|y) = lengthMP x +

lengthMP y

lengthMP _ = 1

lengthTrack :: Track -> Int

lengthTrack (MakeTrack _ dp) =

lengthMP dp

lengthTrack (MakeTrackE _ _ dp) =

lengthMP dp

lengthTrack (Master _ t) = lengthTrack t

lengthTrack (t1 :|| t2) =

max (lengthTrack t1) (lengthTrack t2)

Where lengthMP recursively calculates the size

of a pattern, and lenghtTrack finds out the size of the

largest pattern in a track, i.e., the size of the track.

HMusic provides two constructs for composing
tracks in sequence, a repetition operator |* and a sequenc-
ing operator |+. The repetition operator is similar to .*
but operates on all patterns of a muti-track:

|* :: Int -> Track -> Track

It takes an integer n and a multi-track t and re-

peats all patterns in all tracks n times, adding the needed

rest beats at the end of smaller tracks.

An operator for combining two multi-tracks t1

and t2, generating a new multi-track is also provided:

|+ :: Track -> Track -> Track

When combining two multi-tracks, tracks that use

the same instruments and effects are merged. The seman-

tics of composing two multi-tracks t1 and t2, i.e., t1 |+

t2 is as follows:

• First we add rest beats to the end of each track

in t1 that has matching instruments and effects

with tracks in t2, so that all those tracks have the

same size as the largest pattern in t1

• Then, for all patterns p1 in t1 and p2 in t2 that

have the same instrument i and effects e, we gen-

erate a new track MakeTrack i (p1:|p2)

for simple tracks, and MakeTrackE i e (p1

:| p2) for tracks with effects. Master tracks

are only merged if their internal tracks have the

same instruments and effects. Internal tracks of

a master track are merged using the rules stated

above.

• Finally, we add a pattern of rests the size of t1,

to the beginning of all tracks in t2 that were not

composed with tracks in t1 in the previous step

Hence the size of the composition of two tracks

t1 and t2 is sum of the size of the largest pattern in t1

with the largest pattern in t2.

In Figure 1 some examples of track combination

are presented, where track te1te2 is equivalent to t1

|+ te2, and te3te4 is equivalent to te3 |+ te4,

and te3twice is equivalent to 2 |* te3.

4 Effects and Live Coding

4.1 Live Coding with HMusic

HMusic provides a set of primitives for playing tracks and

live coding. These primitives allow programmers to play

songs written in HMusic, loop tracks, and to modify tracks

on the fly, i.e., while they are being played. These primi-

tives can be seen in Figure 2.

The first primitive, play, takes two arguments: a

Float, which is the BPM (Beats per Minute) of the song

and a track, and simply plays this track in the BPM pro-

vided. The loop function also takes the same arguments

108 17th Brazilian Symposium on Computer Music - SBCM 2019

te1 =

MakeTrack "bassDrum" (X :| O :| O)

:|| MakeTrackE "snare" [Amp 0.5] (O :| O :| X)

:|| MakeTrackE "cymbal" [Reverb 0.3] (X :| X :| X :| X)

te2 = MakeTrack "bassDrum" (X :| O :| O :| O)

:|| MakeTrackE "snare" [Amp 0.5] (O :| O :| X :| O)

:|| MakeTrack "HiHat" (X :| O :| X)

:|| MakeTrack "GuitarSample" X

te3 = Master [Reverb 1.0] te1

:|| MakeTrack "Cowbell" (X :| O :| X)

te4 = Master [Reverb 1.0] te1

:|| MakeTrack "GuitarSample" X

te1te2 = MakeTrack "bassDrum" (X :| O :| O :| O :| X :| O :| O :| O)

:|| MakeTrackE "snare" [Amp 0.5] (O :| O :| X :| O :| O :| O :| X :| O)

:|| MakeTrackE "cymbal" [Reverb 0.3] (X :| X :| X :| X)

:|| MakeTrack "HiHat" (O :| O :| O :| O :| X :| O :| X)

:|| MakeTrack "GuitarSample" (O :| O :| O :| O :| X)

te3te4 = Master [Reverb 1.0]

(MakeTrack "bassDrum (X :| O :| O :| O :| X)

:|| MakeTrackE "snare" [Amp 0.5] (O :| O :| X :| O :| O :| O :| X)

:|| MakeTrackE "cymbal" [Reverb 0.3] (X :| X :| X :| X :| X :| X :| X :| X))

:|| MakeTrack "GuitarSample" (O :| O :| O :| O :| X)

:|| MakeTrack "Cowbell" (X :| O :| X)

te3twice =

Master [Reverb 1.0]

(MakeTrack "bassDrum" (X :| O :| O :| O :| X :| O :| O :| O)

:|| MakeTrackE "snare" [Amp 0.5] (O :| O :| X :| O :| O :| O :| X :| O)

:|| MakeTrackE "cymbal" [Reverb 0.3] (X :| X :| X :| X :| X :| X :| X :| X))

:|| MakeTrack "Cowbell" (X :| O :| X :| O :| X :| O :| X :| O)

Figure 1: Combining tracks

17th Brazilian Symposium on Computer Music - SBCM 2019 109

play :: Float -> Track -> IO ()

loop :: Float -> Track -> IO ()

applyToMusic :: (Track -> Track) -> IO ()

Figure 2: HMusic primitives for live coding

but will loop the track in the BPM provided. If a loop is

already being played, it will be substituted by the new one.

The applyToMusic function can be used to modify the

current pattern being played. It takes as argument a func-

tion from Track to Track and applies it to the pattern

being looped.

These functions can be called in the Haskell in-

terpreter (GHCi [12]) to live code music. Here is a simple

example of a live code session. We start by looping a sim-

ple multi-track that contains only snare and kick:

*HMusic> loop 120 (kickTrack :|| snareTrack)

This call will start looping at 120 BPM a parallel

composition of the kickTrack and snareTrack de-

fined priviously in Section 2.2. Next, we can add to the

loop being played another track with a hi-hat:

*HMusic> applyToMusic

(:|| MakeTrack "ClosedHiHat" (X:|X:|X:|X))

In this example, we are using partial application

to transform the parallel composition operator (that has

type Track -> Track -> Track) into a function

that takes only one argument, i.e., Track -> Track.

Next, we can add a guitar sample in the beginning
of the loop:

*HMusic> applyToMusic

(:|| MakeTrack "guitarSample" X)

The map function is omnipresent in functional

programming languages and it is used to apply a function

to all elements of a list. We can easily define a similar

function for tracks:

mapTrack :: (Track -> Track) -> Track

-> Track

mapTrack f (t1 :|| t2) =

mapTrack f t1 :|| mapTrack f t2

mapTrack f t = f t

The mapTrack function can be used to modify

tracks while they are being played. For example, we could

write a function to substitute instruments of simple tracks:

subsInstr i1 i2 t@(MakeTrack i p)

| i == i1 = MakeTrack i2 p

| otherwise = t

subsInstr i1 i2 t = t

*HMusic> applyToMusic (mapTrack

(subsInstr "ClosedHiHat" "OpenHiHat"))

4.2 Effects in Live Coding

With HMusic, it is possible to dynamically add and remove

effects from tracks being played. For example, it is possi-

ble to add effects to the multi-track being played:

*HMusic> applyToMusic

(\track -> Master [Amp 1.0] track)

Here we used a lambda abstraction to create a

function that takes a track as an argument (the current track

being played), and creates a master track around it.

As another example, we can write a function that

substitutes a set of effects in a track by another set of ef-

fects:

subsEffects :: [Effect] -> [Effect]

-> Track -> Track

subsEffects e1 e2 t@(MakeTrackE i e f)

| e1 == e = MakeTrackE i e2 f

| otherwise = t

subsEffects e1 e2 t = t

and use it to modify the parameter of an effect:

*HMusic> applyToMusic

(subsEffects [Reverb 1.0] [Reverb 0.3])

or to substitute a set of effects by another:

*HMusic> applyToMusic

(subsEffects [Reverb 1.0, Amp 1.0]

[Attack 0.75, Release 0.75])

It is also possible to add effects to simple tracks

by turning them into an effect track:

changeTrack :: Instrument -> [Effect]

-> Track -> Track

changeTrack i e t@(MakeTrack it p)

| i == it = MakeTrackE i e p

| otherwise = t

changeTrack i e t = t

and use it to add an effect to a snare track:

*HMusic> applyToMusic

(changeTrack "snare" [Reverb 1.0])

We also provide a named master track:

data MTrack = (...)

| MasterN String [Effect] MTrack

Naming master tracks helps programmers to eas-

ily modify Master tracks (e.g., modify the effects being

used, modify internal tracks by adding effects) while live

coding. For example, we can define a named track for

drums using the priviously definded drums track:

drumsN :: MTrack

drumsN = MasterN "drums" [Amp 0.2] drums

and while it is being played, we can modify its

effects with the changeMaster function:

changeMaster :: String -> [Effect]

-> Track -> Track

changeMaster name e t@(Master n em tm)

| name == n = Master n e tm

| otherwise = t

changeMaster i e t = t

*HMusic> applyToMusic

(changeMaster "drums" [Sustain 1.0])

110 17th Brazilian Symposium on Computer Music - SBCM 2019

trackcomp =

MakeTrack "kick" X

:|| MakeTrackE "snare" [Reverb 0.5] (O :| O :| X)

:|| MakeTrackE "hihat" [Attack 0.1, Sustain 0.3, Release 0.1] (X :| X :| X :| X)

:|| MakeTrack "guitar" X

live_loop :hmusic do

sample :kick

sample :hihat, attack: 0.1, sustain: 0.3, release: 0.1

sample :guitar

sleep 0.6

sample :hihat, attack: 0.1, sustain: 0.3, release: 0.1

sleep 0.6

sample :snare, reverb: 0.5

sample :hihat, attack: 0.1, sustain: 0.3, release: 0.1

sleep 0.6

sample :hihat, attack: 0.1, sustain: 0.3, release: 0.1

sleep 0.6

end

Figure 3: A multi-track and its code representation in Sonic Pi

5 Compiling HMusic into Sonic Pi

The current implementation of HMusic compiles patterns

and tracks into Sonic Pi [1] code. Sonic Pi is an educa-

tional programming language created with the objective of

teaching programming to kids through the creation of mu-

sic. It is an open source tool originally developed for the

Raspberry Pi processor but it is also available for different

platforms such as Windows, Linux and macOS. Although

the tool has been initially designed for pedagogical pur-

poses, it is currently being used by a variety of musicians

for live coding performances.

To compile the abstractions provided by HMusic

into Sonic Pi code, we use a small set of primitives pro-

vided by the language, such as loops, rests, playing sound

samples and effects:

• live loop: loops the sound generated by a set

of Sonic Pi instructions

• sleep n: makes the current thread wait for n

seconds (or a fraction) before playing the sound

generated by the next instructions

• sample :audofile: plays the audiofile

• Effects: Sonic Pi provides a set of effects that can

be applied to sound samples, e.g., Amp, Reverb,

Sustain, Attack, Release, etc.

We use the BPM parameter of functions loop

and play to calculate the time for each beat, e.g., for 100

BPM, 100 beats will be played in 60 seconds. Figure 3

shows a multi-track and the generated code in Sonic Pi for

looping the track at 100 BPM.

In order to interact with the Sonic Pi server, we

used the Sonic Pi Tool [13], which is a command line util-

ity that allows to send messages to the Sonic Pi server with-

out using its GUI interface. It provides commands to start

the Sonic Pi server, stop it, and also allows to send code

to be processed in real time. The Haskell’s System.Cmd

interface [14], which is a simple library to call external

commands in Haskell, was used to implement the func-

tions play, loop and applyToMusic. These functions

transform HMusic tracks into Sonic Pi code, and use the

System.Cmd library to access the sonic server tool and

execute the generated music. When looping, the code for

the current track being played is held in a global IORef

[15], which is basically a pointer to the track being played.

The loop function substitutes the track being played, and

applyToMusic will modify it, compile it again, and

send it to the Sonic Pi server through the Sonic Pi tool.

6 Related Works

There has been a lot of work on designing programming

languages for computer music and live coding. Most of

these languages, e.g., CSound [3], Max [4, 5], Pure Data

[6], Supercollider [7], Chuck [8], FAUST [9] etc, are based

on the idea of dataflow programming, where signal gen-

erators and processors can be connected either visually or

through code, providing the abstraction of streams of data/-

sound that can be combined and processed. Some lan-

guages for music programming e.g., Gibber [16] and IXI

Lang [17], and music notation languages e.g., LilyPond

[18] and abc notation [19], also provide ways of describ-

ing patterns and/or tracks, but do not focus on their com-

position/combination. In languages like Gibber and IXI

Lang, patterns may contain different sounds, while in the

abstraction provided by HMusic, patterns are associated

with a single sound, just like in sequencers. Patterns in live

coding languages can usually be routed to effects, while in

HMusic effects are associated to individual tracks or multi-

tracks.

There are many DSLs for computer music based

on functional languages, e.g. [20, 21, 22, 23, 24]. These

languages usually provide means for playing notes and

composing the sounds generated in sequence and in par-

allel. In these languages the programmer can write a se-

quence of notes and rests, and these sequences can also be

17th Brazilian Symposium on Computer Music - SBCM 2019 111

combined in parallel and applied to effects. In HMusic,

instead of having different sounds in the same track, each

track indicates when a single sound is played, i.e., It is the

repetition pattern of a single sound, similar to what hap-

pens in grids of a drum machine and sequencers. Although

the symbols used in HMusic have semantic meaning, vi-

sually programs look like an ASCII version of the grids

for writing drum beats available in modern sequencers.

We believe that this approach makes it easier for some-

one that is used with sequencer tools to write simple tracks

in HMusic with little knowledge of functional program-

ming. Furthermore, as patterns are not associated with

sounds, patterns can be reused with different instruments

when needed. HMusic is an extension of a language called

HDrum [25]. HDrum is a language for drum beat program-

ming, and is compiled into midi files. No loading of sam-

ples or live coding is supported.

The formal semantics of a language with support

for live coding is the subject of Aaron et. al. work [26].

The authors discuss some problems with the semantics of

Sonic-Pi sleep function and propose a formalization to

fix the problem while being compatible with Sonic-Pi pre-

vious versions. The work introduces the notion of time-

safety and shows that Sonic-Pi’s new semantics is time-

safe. Time safety is an important notion when programs

consists of multiple threads that need to cooperate to pro-

duce a music. Since HMusic semantics is compiled to

Sonic Pi, it enjoys the time safety property. We let the

formalization of HMusic compilation process and its ex-

tension to support multi-thread programs, like Sonic-Pi, to

future work.

7 Concluding Remarks

This paper described how to extend HMusic with abstrac-

tions for effects. Two new types of tracks were added to

the language, a track that allows the application of effects

on patterns and a track that allows effects on multi-tracks.

The implications of track composition/combination in the

presence of effects were also discussed. HMusic provides

a small set of primitives for playing music and also for live

coding, and we demonstrated that the new abstractions for

effects can also be manipuled on the fly in a live code ses-

sion.

Development of music and live coding in HMu-

sic would be much easier with a special editor that could,

either visually or with options in a menu, generate auto-

matically empty tracks of a desired size, with the program-

mer being responsible for filling the hits. One simple way

of obtaining such a feature is using Emacs macros [27].

The system implemented to support HMusic could be eas-

ily extended for collaborative live coding, where differ-

ent programmers interact with the music at the same time.

HMusic tracks can be converted into strings of text us-

ing Haskell’s Read and Show type classes [28], hence a

simple interface for collaborative live coding can be ob-

tained with a socket server that receives code, which is

processed locally in the clients, and sends to be run on a

central Sonic PI server. Elm [29], is a functional program-

ming language with syntax and many features similar to

Haskell. It is compiled into JavaScript, and used to create

web browser-based graphical user interfaces. We believe

that HMusic could easily be ported to Elm which would

allow web-based music performances.

Acknowledgments

This work was supported by CAPES/Brasil (Programa

Nacional de Cooperação Acadêmica da Coordenação de

Aperfeiçoamento de Pessoal de Nı́vel Superior).

References

[1] Samuel Aaron, Alan F. Blackwell, and Pamela Burnard.

The development of Sonic Pi and its use in educational

partnerships: Co-creating pedagogies for learning com-

puter programming. Journal of Music, Technology and Ed-

ucation, 9:75–94, 05 2016.

[2] The HMusic DSL. https://github.com/hmusiclanguage/hmusic,

January 2019.

[3] CSound. http://csound.com, January 2019.

[4] Emmanuel Favreau, Michel Fingerhut, Olivier Koechlin,

Patrick Potacsek, Miller Puckette, and Robert Rowe. Soft-

ware developments for the 4x real-time system. In Interna-

tional Computer Music Conference, 1986.

[5] David Zicarelli. How I Learned to Love a Program That

Does Nothing. Computer Music Journal, 26(4):44–51,

2002.

[6] Miller Puckette. Pure Data: another integrated computer

music environment. In in Proceedings, International Com-

puter Music Conference, pages 37–41, 1996.

[7] James McCartney. Supercollider, a new real time synthesis

language. In International Computer Music Conference,

1996.

[8] Ge Wang and Perry Cook. Chuck: A programming lan-

guage for on-the-fly, real-time audio synthesis and multi-

media. pages 812–815, 01 2004.

[9] Yann Orlarey, Dominique Fober, and Stephane Letz.

FAUST: an Efficient Functional Approach to DSP Pro-

gramming. In New Computational Paradigms for Com-

puter Music, 2009.

[10] Christopher Alex McLean. Artist-Programmers and Pro-

graming Languages for the Arts. PhD thesis, University of

London, 2011.

[11] Andre Rauber Du Bois and Rodrigo Geraldo Ribeiro.

Hmusic: A domain specific language for music pro-

gramming and live coding. In Marcelo Queiroz and

Anna Xambó Sedó, editors, Proceedings of the Interna-

tional Conference on New Interfaces for Musical Expres-

sion, pages 381–386, Porto Alegre, Brazil, June 2019.

UFRGS.

[12] Glasgow Haskell Compiler. https://www.haskell.org/ghc/,

January 2019.

[13] Sonic Pi Tool. https://github.com/lpil/sonic-pi-tool, Jan-

uary 2019.

[14] System.Cmd. http://hackage.haskell.org/package/process-

1.6.5.0/docs/System-Cmd.html, January 2019.

[15] Simon Peyton Jones. Tackling the Awkward Squad:

monadic input/output, concurrency, exceptions, and

foreign-language calls in Haskell. In Engineering theories

of software construction, pages 47–96. Press, 2002.

[16] Charles Roberts, Matthew K. Wright, and JoAnn Kuchera-

Morin. Music Programming in Gibber. In ICMC, 2015.

112 17th Brazilian Symposium on Computer Music - SBCM 2019

[17] Thor Magnusson. The IXI Lang: A SuperCollider Parasite

for Live Coding. In International Computer Music Confer-

ence, 2011.

[18] LilyPond. http://lilypond.org/, January 2019.

[19] ABC Notation. http://abcnotation.com/, January 2019.

[20] Alex McLean. Making Programming Languages to Dance

to: Live Coding with Tidal. In FARM 2014. ACM, 2014.

[21] Paul Hudak, Tom Makucevich, Syam Gadde, and

Bo Whong. Haskore music notation: An algebra of mu-

sic. J. of Functional Programming, 6(3), May 1996.

[22] H. Thielemann. Audio Processing Using Haskell. In

DAFx04, 2004.

[23] Paul Hudak and David Janin. Tiled polymorphic temporal

media. In FARM 2014. ACM, 2014.

[24] Paul Hudak. An algebraic theory of polymorphic temporal

media. In PADL, 2004.

[25] André Rauber Du Bois and Rodrigo Geraldo Ribeiro. A

domain specific language for drum beat programming. In

Proceedings of the Brazilian Symposium on Computer Mu-

sic, 2017.

[26] Samuel Aaron, Dominic Orchard, and Alan F. Blackwell.

Temporal semantics for a live coding language. In Proceed-

ings of the 2Nd ACM SIGPLAN International Workshop on

Functional Art, Music, Modeling & Design, FARM

’14, pages 37–47, New York, NY, USA, 2014. ACM.

[27] The Emacs editor. https://www.gnu.org/software/emacs/,

January 2019.

[28] Simon Thompson. The Craft of Functional Programming.

Addison-Wesley, 2011.

[29] The Elm Programming Language. https://elm-lang.org/,

January 2019.

17th Brazilian Symposium on Computer Music - SBCM 2019 113

