
Design and implementation of an open-source subtractive

synthesizer on the Arduino Due platform

Rodolfo Pedó Pirotti 1, Marcelo Johann 1, Marcelo Pimenta 1

1 Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)

Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

rodolfo.p.pirotti@gmail.com, {johann, mpimenta}@inf.ufrgs.br

ABSTRACT

In this paper we present the design of a dig-

ital subtractive synthesizer using fixed-point

arithmetic on the Arduino Due platform. Our

main contribution is to show that a fully func-

tional instrument of this type can run on a cheap

and widely accessible processor. We have imple-

mented oscillators with anti-aliasing algorithms,

resonant filters, an envelope generator, a delay

effect, a MIDI interface and a keybed scanner,

therefore making a complete playable instru-

ment. The implementation uses object orienta-

tion to create software modules replicating those

classic analog synthesizer functions. With this

approach, we have a modular software system

that can be easily extended and adapted for new

functionalities. An external DAC was used to

provide the high-quality audio output of 16 bits

at 48KHz. In addition to this, we also included

an additive synthesis organ, demonstrating the

possibility of having two important synthesis

methods at the same time on the Due board. With

this open and public design, we intend to contrib-

ute to the maker movement and encourage new

and innovative implementations in this area.

1. Introduction

A significant number of audio synthesis

techniques are used nowadays on professional

musical instruments and home-made projects as

well. Among these, the most fundamental are the

subtractive synthesis and the additive synthesis.

Subtractive synthesis became very popular with

the analog synthesizers of the 60’s and 70’s,

which used hardware modules that could be con-

nected together, with a modular concept. The in-

troduction of this type of electronic instrument

brought new areas of possibility to sound crea-

tion and musical performance – the adoption and

popularity of analog synthesizers grew up fast

with the synthesizers launched on those years.

Nowadays, on the digital domain, virtual

analog instruments, which are digital and soft-

ware emulation of analog synthesizer functions,

are common, either as separate instruments or as

part of most digital synthesizers. Nevertheless,

the prices of these instruments are often high.

The complexity involved in the design of

professional digital musical instruments is natu-

rally increasing as the technology progresses. It

usually involves the design of ASICS (applica-

tion-specific integrated circuits), or program-

ming of complex DSPs (Digital Signal Proces-

sors), lots of memory and all the sound capture

and processing tasks required to prepare sam-

ples, design of complex PCBs (Printed Circuit

Boards) and so on. In some sense, the complexity

usually employed makes us believe that this is

absolutely necessary to get a functional instru-

ment.

On the other hand, smaller processors have

also evolved tremendously, and nowadays, for a

small budget, there is available a large number of

open-source platforms. Boards like Arduino,

Raspberry Pi and Beagle Bone provide compu-

ting, processing power and interfaces on a ready-

to-go board that can be used even by people with

almost no knowledge of engineering and elec-

tronic components, and the number of users of

these platforms is growing every year [1]. Part of

this increasing number of projects and boards is

related to the DIY culture and maker movement,

emerging movements in which people aim to

create, design, build or modify products, equip-

ment, home items, making art projects, music

and several other things.

In the audio realm, there have been many

attempts to implement basic audio synthesis us-

16th Brazilian Symposium on Computer Music SBCM 2017

São Paulo – Brazil 33

ing platforms such as the Arduino. But until re-

cently, it was not possible to implement full-fea-

tured instruments with an audio quality consid-

ered as "professional", here defined as being able

to generate and output audio with at least 16-bit

resolution, 48 kHz sample rate and no output ali-

asing, because the basic boards that were widely

available lacked resources and computing power

for that. In other words, the audio synthesis im-

plementations for the Arduino Uno, for example,

are very interesting from the point of view of

learning and experimentation, but too limited to

be used to implement a "real instrument", some-

thing with an audio quality that would be used by

a trained musician for traditional performances

or studio recording. They present too little reso-

lution, limited bandwidth, lots of noise and alias-

ing and so on.

In this work, we wanted to investigate the

hypothesis that it is possible to design and imple-

ment a fully functional subtractive synthesizer

with good quality audio output using the still

limited processing resources of the Arduino Due

platform, in opposition to the premise that a

high-quality music synthesizer needs dedicated

and expensive processors and electronic compo-

nents. By achieving this goal, this design could

become a reference to be used by others to build

their own synthesizer on a low-budget hardware.

The rest of this paper is organized as fol-

lows: Section 2 presents a comparison with re-

lated work and the specific goals of this paper.

Section 3 presents the design of subtractive syn-

thesizer modules, an overview of software mod-

ules integration and considerations about the ad-

ditive synthesizer. Section 4 presents analysis

and measurements made with the implementa-

tion. Finally, in Section 5 we describe some con-

clusions and discussions about future ideas.

1.1 The Arduino Due Platform

Arduino is an open-source prototyping

platform based on flexible and easy-to-use hard-

ware and software. Its usage has been growing

on recent years by students, professionals and

amateurs in many areas. Comparing to other

open-source platforms listed before (Raspberry

PI and Beagle Bone), Arduino is more suitable

for low-level applications, and its learning curve

is usually faster comparing to others [1].

The Arduino Due has a 32-bit ARM micro-

controller running at 84 MHz and 96 kB of RAM

memory. With these specifications, unlike sim-

pler boards as Arduino Uno or Nano, we esti-

mated that serious audio applications could run

output audio with minimum professional audio

quality (16 bits / 48 kHz).

2. Context

In order to provide the context to our con-

tribution, we have listed a few previous related

works with implementation of subtractive syn-

thesizers and classified them according to the

following criteria:

• Build complexity: how hard it is for some-

one with small knowledge of electronic and com-

puting to build;

• Total cost: total cost to build and use the

synthesizer;

• Usage purpose: if for learning purpose

only, with no commitment regarding the output

quality; if for usage as a real music instrument;

• Output quality: if the output fits the mini-

mum requirements of 16 bits of audio resolution,

sample rate above Nyquist frequency (sample

rate at least twice the highest harmonic – around

17 kHz for additive synthesis organ and 44.1 kHz

for virtual analog) and no output aliasing.

Table 1 shows a comparison of related

works. By looking at their characteristics, we can

observe that our proposal differs from others in

many aspects. The work of [2] presents a sub-

tractive synthesizer implementation for accessi-

ble platforms, but with low audio quality output

and no anti-aliasing algorithms. In [3], authors

only propose how to design an instrument, with-

out showing the actual implementation, whereas

in [4] it is necessary to pay for the project. There

are other projects like [5], which presents a de-

sign suitable for a PC computer, and [6,7], as ex-

amples of complete analog synthesizer designs.

In such cases, they are either too expensive and

with a high complexity to build, or require a full

personal computer to run, different from the pur-

pose of this work.

SBCM 2017 16th Brazilian Symposium on Computer Music

34 São Paulo – Brazil

Author [2] [3] [4] This work

Build complexity Medium NA Easy Medium

Total cost

Cost of Arduino Uno

(aprox. U$ 22), plus few

external components

NA

Product

sold by U$

266

Cost of Arduino Due

(aprox. U$ 30), plus few

external components

Usage purpose Learning NA Learning Instrument

Output quality Poor NA Poor High

Table 1. Related work comparison

2.1 Specific goals

After the comparison, we define the spe-

cific goals of this work:

• To design and develop a subtractive synthe-

sizer using classic modular analog synthesiz-

ers as reference, on a cheap, widely available

and easy to use platform – Arduino Due;

• To identify and use efficient algorithms that

fit in the limited processing capacity of the

chosen platform.

• To have a modular software design that

makes it easy to change and add features as

needed;

• To add a good-quality audio output, so the

synthesizer can be used as a real musical in-

strument;

• To include on the design an additive synthe-

sis, based on [8], to show that it is possible to

have two fundamental synthesis methods

programmed at the same time on a small

budget platform;

• To contribute to the maker movement by

sharing the design, encouraging new and in-

novative implementations in this area and in-

creasing the usage and access to (electronic)

musical instruments and the musical creativ-

ity.

3. Synthesizer Design

We started the design by establishing some

guidelines so that the implementation could be

successful, easily tested, and further extended.

We defined that:

• for mathematic calculation, we must use

fixed point arithmetic instead of floating

point arithmetic, as the Arduino Due proces-

sor does not have floating point unit.

• for subtractive synthesis, the software model

should use an object-oriented design, making

separate classes which mimic the functions

of analog synthesizers (their modules);

• for test and simulation, to implement mock

or hardware abstraction functions that enable

the test and simulation of algorithms on a

standard PC;

3.1 Time-critical, time-accurate and house-

keeping tasks

This organization was already proposed by

[8], and is used in our implementation to effi-

ciently compute the necessary functions accord-

ing to their criticality. The time-critical tasks in-

clude the code for the audio processing, like

waveform generation, filter and effect calcula-

tion. This is the code that needs to run at the ex-

act sample rate to produce each audio sample.

Time-accurate tasks include tasks whose

updates are much less frequent, but depend on

correct timing. They do not need to be computed

at each sample, but still need to be accurately

evaluated over time. They typically include the

envelope generator and other low-frequency

modulation functions. Part of this code might

still be computed at the main loop, but at least

the time-accurate interruption needs to keep

track of the time elapsed by means of one or

more counters, as needed.

It is important to note that the time-accu-

rate tasks must be implemented as an interrupt

with a lower priority than the time-critical code,

otherwise they will interfere with it.

Finally, housekeeping tasks include the

keybed scanning, switches and analog input

readings, as well as any general control code.

This last set of tasks do not need a time-accurate

execution and can be slightly delayed as long as

we keep their periodicity under acceptable val-

ues so not to impact the playing experience in a

bad way.

16th Brazilian Symposium on Computer Music SBCM 2017

São Paulo – Brazil 35

Figure 1. Main classes developed for the subtractive synthesizer

With this structure in mind, the code is

composed of the classes shown in Figure 1,

which will be described in the next sections.

3.2 Oscillator module

According to [9] and [10], the oscillator

module converts a voltage value to a waveform

output on a specific frequency. Usually it also

has control inputs such as to modulate the main

frequency and select waveform type.

In our implementation, we’ve created a

software class that implements the oscillator,

with features such as waveform type selection,

portamento (a feature usually associated to the

keybed on classic analog synthesizers, but we

chose to move it to the oscillator class), fre-

quency modulation (to use together with an

LFO), fine tuning and octave selection.

One of the key points of the oscillator class

is the waveform generation algorithm. The Nu-

meric Controlled Oscillator (NCO) [11] is the

simplest approach and does not require a lot of

calculation, but it produces undesired aliasing in

the output signal for pulse and sawtooth waves.

A comparison of anti-aliasing algorithms is pre-

sented on [12], and based on that we chose to use

the Polynomial Bandlimited Step Function

(PolyBLEP) algorithm for pulse and sawtooth

waves, while the sine wave uses the wavetable

method [13], as there is no aliasing on this

method for sine waves. The PolyBLEP algo-

rithm was implemented using fixed-point arith-

metic and 32-bits integer types.

3.3 Envelope Generator module

According to [9] and [10], the Envelope

Generator (EG) module generates a signal used

to control other modules in order to give a con-

tour to some parameter, like the signal amplitude

or filter cutoff frequency.

Our design has control inputs to configure

Attack, Decay, Sustain and Release values, plus

Gate and Trigger signal simulation. A seventh

input is used to configure the EG behavior

(SetTriggerMode). The output value is a 32 bits

fixed point value, with 16 bits of fractional part.

The output value is always less or equal to 65536

(equivalent to 1.0), and can be used as a multi-

plier to another module parameter. Figure 2

shows the state machine of this module.

3.4 Filter module

For the filter module, we created a base

class to be an interface class to allow different

filter implementations. On our current prototype,

there are two different low pass filters, one based

on [5] (a fourth-order filter) and other based on

[14] (a fourth-order filter with resonance based

on Robert Moog’s filter used on Moog synthe-

sizers).

SBCM 2017 16th Brazilian Symposium on Computer Music

36 São Paulo – Brazil

Figure 2: Envelope generator state machine

3.5 Delay effect and note controller modules

The delay effect module is a simple delay

with feedback effect, used to create a repeating

and decaying echo in the sound. The note con-

troller module was created to be responsible for

managing the notes being played and generate

the gate and trigger signals. It has methods to

process MIDI events (note on and note off) and

a method to scan a keybed.

3.6 External DAC

Arduino Due processor has a 12 bits inte-

grated DAC (digital to analog converter), which

is good for general applications and even some

experimental audio applications, but in order to

improve the audio processing and reduce output

noise, we chose to use an external 16 bits DAC.

The DAC used is the TDA1543A, a dual-

channel 16 bits DAC for usage in hi-fi applica-

tions. Using the code provided by [15] as refer-

ence, we implemented our own class responsible

to configure and send data to the DAC.

3.7 Module integration

Each software module was created as a

separate class and can be instantiated as different

objects. This approach makes it possible and

easy to add (or remove) oscillators, envelope

generators, filters and effects (and other features)

to the synthesizer, keeping in mind the pro-

cessing time of each module.

VCO1

VCA

EG

output

VCO2

+ DelayVCF

Figure 3: Typical synthesizer diagram

Figure 3 shows an example of a typical

connection between analog synthesizer modules.

The code below is the equivalent code in our de-

sign to implement the same architecture and con-

nections.

output = pVCO1->process() + pVCO2->pro-
cess();
output = pFilter->process(output);
output = output * pVcaEg->getOutput() >>
FRACT_WIDTH;
output = pDelay->process(output);

3.8 Testing and simulation

This implementation runs on an embedded

system with limited resources and interfaces.

This would make it harder to debug and validate

the algorithms. To improve testing and simula-

tion capabilities, we created empty code defini-

tions and calls to hardware related interfaces.

This enables us to build the code using a standard

compiler like GCC or MS Visual Studio on a

standard PC, taking advantage of all debugging

tools.

3.9 Additive synthesis organ

When we started the development of the

subtractive synthesizer, we realized that the most

critical concern is the processing speed, mainly

because of the lack of a hardware floating point

unit. After the first code implementations and

tests, we observed that the amount of flash and

RAM memory available on the Arduino Due

processor was much more than needed for our

proposal. We decided therefore to implement an

additive synthesis organ, based on the imple-

mentation described in [8], and integrate it to the

subtractive synthesizer.

The implementation, based on classic

Hammond organ design, includes the functions

of 9 drawbars, 61 notes with full polyphony, 96

oscillators (compared to 91 implemented on

Hammond organs), vibrato and tremolo effects.

For this implementation, the output sample rate

16th Brazilian Symposium on Computer Music SBCM 2017

São Paulo – Brazil 37

was reduced to 24 kHz, but it is enough for the

organ design because its highest oscillator runs

at 8372 Hz.

The integration of subtractive and additive

synthesis cannot be simultaneously played, as

each audio generation tasks takes up almost all

the processing power. On the other hand, they

can coexist programmed at the Arduino Due

board at the same time, and they can be switched

on the fly, e.g., the user can select one or the

other mode and start playing right away by

changing a simple switch.

3.10 Block diagram

Figure 4 shows a block diagram of the final

synthesizer. The Arduino Due board is the main

component. In addition to this, there’s an array

of potentiometers, used to control analog param-

eters in realtime, an array of digital switches,

used to enable and disable features, the digital-

to-analog converter, the MIDI input circuit, and

digital pins connected to the keybed, some con-

figured as output and others configured as inputs

(the keybed works as a matrix with 8 columns

and 7 rows).

Arduino Due D/A

MIDI In

POT array

Digital

Switches array

Keybed array

(in/out)

Figure 4: Hardware block diagram

Figure 5 shows one potentiometer input. The

POT array shown on Figure 5 is an array of 11

potentiometer inputs, each one connected on a

different Arduino analog input.

Figure 5: Potentiometer input

The digital switches array is a group of 16 digital

switches, connected to Arduino digital inputs.

Figure 6 shows an example of 1 input.

Figure 6: Digital switch input

The D/A is the circuit used for the TDA1543A

DAC component, shown on Figure 7.

Figure 7: TDA1543A digital-to-analog con-
verter

Figure 8 shows the MIDI input circuit.

Figure 8: MIDI In circuit

For the keybed scanning, there are 7 digital ports

configured as output and 8 digital ports config-

ured as input. Figure 9 shows one of the output

digital ports (Dx is Arduino output and Ko is

keybed), and Figure 10 shows one of the input

digital ports (Dx is Arduino input and Ki is key-

bed).

Figure 9: Arduino output for keybed

Figure 10: Arduino input for keybed

4. Features and output analysis

We present here some analysis regarding

important areas of the implementation.

SBCM 2017 16th Brazilian Symposium on Computer Music

38 São Paulo – Brazil

4.1 Output aliasing check

The anti-aliasing algorithm was chosen

based on the analysis of [12]. The PolyBLEP al-

gorithm seemed to be a nice approach, with low

processing overhead and good output results.

Figure 11 shows the frequency spectrum of the

output without the PolyBLEP algorithm for a

square wave, C note, frequency of 2093 Hz.

Figure 11: Frequency spectrum without Poly-
BLEP

Figure 12 shows the frequency spectrum of

the output with the PolyBLEP algorithm, for a

square wave, C note, frequency of 2093 Hz. It is

clearly visible the reduced aliasing caused by the

PolyBLEP addition.

Figure 12: Frequency spectrum with Poly-
BLEP

4.2 Filter spectrogram

Figure 13 shows the spectrogram of one of

the filters implemented [14] for a single note us-

ing square wave, while increasing the cutoff fre-

quency and the resonance control.

Figure 13: Filter spectrogram

5. CONCLUSIONS

In this paper we presented the design and

implementation results of a high quality subtrac-

tive synthesizer implemented on the Arduino

Due platform. We also demonstrated that it is

possible to have an additive synthesis organ in-

spired on Hammond design on the same platform

at the same time. The complete implementation

is open, public and focused on low cost plat-

forms. Although the implementation was created

on the Arduino Due, we believe it fits also on any

other similar board containing an ARM Cortex-

M3 processor or other processors with similar ar-

chitectures (maybe removing some features or

modules if using a slower clock than 84 MHz).

The fixed-point approach completely met

the expectations for the implemented algorithms.

With the 32 bits processor, we could use fixed

point calculations with a good resolution.

The required time for processing the main

modules allowed us to include two oscillators,

two envelope generators with selectable trigger

mode, one LFO, one low pass filter, one effect

module, a MIDI receiver and a keybed on a 48

kHz sample rate. The PolyBLEP algorithm, im-

plemented with fixed point calculation also pre-

sented good results, by removing a significant

part of the audible aliasing from the pulse and

sawtooth waves.

Regarding the filter implementation, we

used two filter designs from [5] and [14] and, alt-

hough they are good starting points and bring a

lot of possibilities to the sound creation, we be-

lieve this is one of the key points for further im-

provement. As future work, we propose the im-

plementation of different filters that could repli-

cate better the filters used by classical synthesiz-

ers, such as Moog, ARP or Oberheim.

The object-oriented design made it possi-

ble to easily modify the synthesizer features and

allowed us to validate the algorithms by running

the code on a standard PC. We encourage the us-

age of this approach by having function mocks

or empty function calls for hardware related

functions.

Finally, both subtractive and additive syn-

thesis are available on the same code and plat-

form, and the user can select between them with

a simple toggle switch connected to an Arduino

Due digital pin.

16th Brazilian Symposium on Computer Music SBCM 2017

São Paulo – Brazil 39

As for next steps, besides a better filter im-

plementation, we intend to implement more ef-

fect types, “keyboard tracking” on filters and

LFOs, to make the parameter control to be ad-

justable depending on the note being played (as

present on old analog synthesizers), two note po-

lyphony (but this would reduce the total number

of modules instantiated in the system) and other

waveform types, such as sample-and-hold and

noise.

Furthermore, the successful implementa-

tion of two synthesizers on the simple Arduino

Due board using fixed point arithmetic demon-

strates that complex audio functions can be im-

plemented cheaply in this platform and provide

a good audio quality. It naturally opens up sev-

eral other opportunities for implementing other

forms of audio synthesis, other functions and

modules, and also innovative ideas with the con-

tribution of a larger community.

The source code is available in a public re-

pository [16]. The schematics and some pictures

of the synthesizer finished are also included in

the repository. A video of the project for sound

demonstration is available at

https://youtu.be/asuycIvozhg.

6. References

[1] P. Jamieson and Jeff Herdtner, “More

missing the Boat - Arduino, Raspberry Pi, and

small prototyping boards and engineering

education needs them” in Frontiers in Education

Conference (FIE), 2015. 32614 2015. IEEE,

2015. doi: 10.1109/FIE.2015.7344259

[2] T. Barrass. (2016). “Mozzi Sound Synthesis

Library for Arduino”. Source code available at

http://sensorium.github.io/Mozzi/

[3] A. Huovilainen, “Design of a Scalable

Polyphony-MIDI Synthesizer for a Low Cost

DSP”, M. S. thesis, Department of Signal Pro-

cessing and Acoustics, Aalto University School

of Science and Technology, Espoo, Finland,

2010.

[4] L. Biddulph and J. Ziembicki. (2000).

“AVRSynth”. Available at http://www.elby-

designs.com/contents/en-us/d5.html

[5] M. Finke. (2013). “Martin Finke’s Blog”.

Available at http://www.martin-

finke.de/blog/articles

[6] Y. Usson, “Yusynth”. Available at

http://home.yusynth.net/

[7] modular.br, Facebook private group, con-

taining 1.108 members on September 2016.

Available at https://www.face-

book.com/groups/modularbr/

[8] < Omitted for blind review >

[9] D. Crombie, The Complete Synthesizer: A

Comprehensive Guide, Omnibus Press, 1982.

[10] Devahari, The Complete Guide To

Synthesizers, Prentice-Hall, Inc., 1982.

[11] E. C. Kisenwether and W. C. Troxell,

“Performance Analysis of the Nuumerically

Controlled Oscillator” in 40th Annual

Symposium on Frequency Control, 1986. doi:

10.1109/FREQ.1986.200971

[12] V. Valimaki and A. Huovilainen,

“Antialiasing oscillators in subtractive

synthesis” in IEEE Signal Processing Magazine,

v. 24, n. 2, p. 116–125, 2007. doi:

10.1109/MSP.2007.323276

[13] W. Pirkle, Designing Software Synthesizer

Plug-Ins in C++, Burlington, MA: Focal Press,

2014. [E-book] Available: Safari Books Online.

[14] P. Kellett, “Moog VCF, variation 1, 24dB

resonant low pass”, source code available at

http://www.musicdsp.org/archive.php?classid=3

#25

[15] Delsauce. (2013). “ArduinoDueHiFi - An

I2S audio codec driver library for the Arduino

Due board”, source code library avaiable at

https://github.com/delsauce/ArduinoDueHiFi

[16] https://github.com/rppirotti/rgsynth

SBCM 2017 16th Brazilian Symposium on Computer Music

40 São Paulo – Brazil

