
aAaA: an attribute aware abstraction architecture allowing arbitrary
argument assignment in Pure Data

José Henrique Padovani1∗

1NICS - Interdisciplinary Nucleus of Sound Communication / State University Of Campinas (UNICAMP)
Music Department / Arts Institute / State University Of Campinas (UNICAMP)

R. Elis Regina, 50 – Cidade Universitária – Campinas, SP – CEP 13083-854

josep@unicamp.br

Abstract
We describe aAaA, an abstraction-based ex-

tension for Pure Data (Pd) that parses any num-
ber of attributes (@-initiated symbols) and their
associated arguments and routes the entered val-
ues to unique labeled receivers. This approach
expands the syntax of Pd without the need of
compiled libraries, objects and extensions – a
feature that can be useful in contexts in which Pd
abstractions are embedded in applications, mo-
bile and similar architectures.

1. Introduction

In the last decades Pure Data (Pd) has become
a major music and audio programming environ-
ment, being extensively used in artistic contexts,
pedagogical situations, entertainment products
and research projects. Due to its intuitive graphi-
cal coding approach (consisting of interconnect-
ing objects, messages and other data structures
to route symbolic control informations and dig-
ital audio signals) and also to its multi-platform
free and open source software licensing, compat-
ibility and distribution, Pd has spread rapidly as
a flexible and powerful tool to process and syn-
thesize sounds in real-time [1].

Recently, it also became a very convenient au-
dio framework, being possible to be embedded
in other applications and run not only in conven-
tional desktop and laptop computers but, also, in
mobile platforms and single-board computers[2,
3]. In these environments, it is usually easier to
run Pd “patches” that do not require any com-
piled extensions. If this is sometimes seen as a
limitation – specially taking into account that the

∗Supported by CNPq [Edital Universal 14/2014] and
FAEPEX/UNICAMP

increasing use of Pd was largely due to the now
discontinued “Pd-extended” fork, that was dis-
tributed with a large set of compiled extensions
–, it is possible to make Pd abstractions that re-
produce the features provided by these extended
objects and functions. This can be done with
coding/‘patching’ strategies such as dynamical
patching, without causing any significant loss of
performance1.

Taking this context into account, this paper
presents an abstraction extension entirely created
with Pd vanilla resources that expands the ar-
gument syntax of Pd abstractions entirely writ-
ten as patches that use only usual vanilla ob-
jects. Developed to be run in Pd vanilla, aAaA
can be seen as a template abstraction that emu-
lates some of the Max2 features related to how it
deals with objects and their arguments. In some
Max objects, it is possible to assign arguments
by entering one or more attributes and related
values. A Max [cycle˜] oscillator object, for
instance, can be created with arguments such as
@phase, @frequency, @buffer and other
attribute tags followed by their respective val-
ues (a handy syntax feature that makes patching

1Until few years ago, Pd was distributed in two ma-
jor versions. Pd “vanilla” is the main branch of develop-
ment, being mostly carried by Miller Puckette with few
core objects. The “extended” fork was distributed in a
larger package with many compiled extensions and ob-
jects. It was mainly maintained by Hans-Christoph Steiner
and is now not supported/developed any more. To com-
pensate this, Pd-vanilla has, since the version 0.47.0, its
own extensions install manager (deken). It is also worth to
mention a new cross-platform Pd branch: Purr Data/Pd-
l2ork, which comes with many pre-compiled extensions
and features a modern HTML5 based GUI. More infor-
mation about Pd “flavors” can be reached at https:
//puredata.info/

2 http://cycling74.com/products/max.

16th Brazilian Symposium on Computer Music SBCM 2017

São Paulo – Brazil 19

more user-friendly/mnemonic and makes possi-
ble to enter only the relevant non-default values
desired in a specific context)[4].

While similar functionalities have been al-
ready implemented in compiled objects and li-
braries in Pd (as it happens, for example, with the
library cyclone, designed to clone many Max
features in Pd)[5] and while other Pd compiled
objects use “flags” to set specific internal param-
eters and values, aAaA implements this same
kind of syntax recognition inside Pd by taking
advantage of dynamical patching processes.

2. Pd abstractions and arguments

A parsing process that iterates given attributes
and arguments of an abstraction is not trivial to
be constructed with Pd patches. Indeed, as Pd
is a graphical language, processes like iterative
loops or parsing processes are constructed in a
very different way than similar processes pro-
grammed in functional or object-oriented code
based languages. Particularly regarding argu-
ment parsing, if it is desired that some abstrac-
tion uses arguments that are informed in the mo-
ment of the object instantiation, it is necessary,
in order to use these values to some purpose, to
know exactly how many arguments will be used
and in which order they will be informed. In this
way, one can use Pd objects and dollarsign ar-
guments to retrieve the values informed by the
user/developer when he instantiates the object.
If the abstraction patch has a [float $1] and
a [symbol $2] inside, these two objects will
store respectively a number and a string that can
be then used internally to change parameters of
the algorithm.

Briefly, the aAaA algorithm parses an arbi-
trary number of symbols and floats given as
the objects arguments, and groups them in lists
for each attribute – a pseudo-type that consist
in a symbol/string that begins with the @ char-
acter. These lists are used internally to route
the attribute-nestled parameters to the appropri-
ate receivers ([receive]/[r] objects). Ar-
guments given before any @-initiated symbol are
internally grouped in a single list to be sent to its
respective receiver object, being possible to split

them in individual symbols, unpack or subject
them to other parsing/processing mechanisms.

In the following sections, further details are
giving explaining each step of the algorithm and
exemplifying the application of aAaA in a simple
synthesis abstraction based object.

3. aAaA: any Arguments and Attributes
Internally, aAaA has a ‘subpatch’ (a con-

tainer where a sub-process runs) named
[pd aAaA-kernel] (Fig. 1). This subpatch
encapsulates the mechanism that parses argu-
ments such as floats, symbols and attributes
and sends them to the appropriate [receive]
objects that may used those values if they are
informed by the user/developer.

pd $0-atribs

Subpatch for volatile argument and attribute matching.
Content is created and destroyed dynamically. Arguments with
true values are sent to the $0-thisarg receiver. These
values are added to a message that is finally printed when
the patch has parsed the N maximum arguments)

by default we will count to 100, to parse 100 arguments:
change internal message if you need more.

r $0-arguments_as_messages

list split 1

list

t b s

s

send generated message to the respective receivers

1

2

3

pd count_dynp

pd parse_type

pd messagebuild

pd $0-dynpatching

Dynamically creates $0-atribs content, and checks if there
is an informed instantiation argument for the current count
number

4

Logic to treat symbols beginning with "@" as attributes,
which will have their own $0@xxx element to route arguments.

Appends current values to a comma separated message,
grouping attributes and subsequent arguments between commas.
First arguments can be given without attribute tags, and
will have the default $0@not@ tag to route arguments
internally (avoiding interference with other attribute-aware
abstractions)

5

aAaA_v.0.1

pd licensepd acknowledgement

Figure 1: [pd aAaA-kernel] subpatch
content

The [pd aAaA-kernel] ‘subpatch’ is de-
signed be copied to any Pd abstraction being
written, enabling it to parse attributes/arguments
internally.

[pd $0-atribs] (Fig. 2) is a blank con-
tainer whose content will be iteratively populated
and destroyed with dynamically created objects.

SBCM 2017 16th Brazilian Symposium on Computer Music

20 São Paulo – Brazil

This is done to retrieve each of the arguments
given in the instantiation of the aAaA-enabled
abstraction, according to a counter that is driven
in the [pd count_dynp] sub-patch (fig. 2).
This patch controls the main counter, and send
ordered messages to initiate the whole process, to
execute the dynamical patching mechanism and
to inform which is the current argument index
from 1 to N (that has the default value of 100,
which can be changed for specific situations).

until

f
+ 1

0

loadbang

+ 1

100
Number of arguments to try (N)

s $0-resetmessage

t f b f

s $0-currentargn

s $0-dynpatch

(counts until N to parse input arguments)

Main Counter and dynamic patcher control

t f f

Figure 2: [pd count dynp] content

\$100-

pack s $0

pack f $0

;
pd-$2-atribs clear;

$1

clear container subpatch

create symbol with dollarsign

create other objects and connect them

t list list list list

\$100

pack s $0

$1

makefilename $%d

;
pd-$2-atribs obj 37 135 list append $1;

;
pd-$2-atribs obj 10 60 symbol $1;
pd-$2-atribs obj 100 60 makefilename $%d-;

makefilename $%d-

;
pd-$2-atribs obj 10 10 r $2-sub;
pd-$2-atribs obj 10 35 t b f;
pd-$2-atribs obj 10 85 sel s;
pd-$2-atribs obj 37 110 b;
pd-$2-atribs obj 37 160 s $2-thisarg;
pd-$2-atribs obj 10 185 s $2-noarg;
pd-$2-atribs connect 3 0 4 0;
pd-$2-atribs connect 4 1 1 0;
pd-$2-atribs connect 4 0 0 0;
pd-$2-atribs connect 1 0 5 1;
pd-$2-atribs connect 0 0 5 0;
pd-$2-atribs connect 5 1 6 0;
pd-$2-atribs connect 6 0 2 0;
pd-$2-atribs connect 2 0 7 0;
pd-$2-atribs connect 5 0 8 0;
$2-sub $1;

r $0-dynpatch

Figure 3: [pd $0-dynpatching] content

symbol $100- makefilename $%d-

list append $100

r 1018-sub

t b f

sel s

b

s 1018-thisarg

s 1018-noarg

Figure 4: The dynamically created [pd
$0-atribs] subpatch content at
the moment that the counter
has reached the number 100

The [pd $0-dynpatching] (fig. 3) pro-
cess creates and deletes dynamically the content
of the abstraction [pd $0-atribs] (fig. 4)
and retrieves the argument in the current index
informed by the main counter, checking if it re-
ally was informed in the moment of object in-
stantiation.

r $0-thisarg

r $0-noarg not set attributes will send a bang to here

pd type_check

f

add2 $1

symbol

t a b

1

0

set attributes will be received here

s $0-finalmessagegate

s $0-finalmessagegate

outlets 1, 2, 3: float, usual symbol and @ symbol values,
respectively;
outlet 4: flag with symbols "f", "s" and "@"

s $0-flag

s $0-attrVal

r $0-add2s

s $0-finalMessageSpigot

r $0-add2f

Figure 5: The [pd parse type] content.

The [pd parse_type] (fig. 5) sub-patch
checks if the argument is a floating point num-
ber (f), a usual symbol/string (s) or an attribute
(@) – i.e., a symbol that begins with the char @.
The flags f, s and @ are sent to the following
processes, being used to organize a growing list
of comma separated messages that will be sent at
the end of the parsing process to local receivers
named according to the attribute tags.

16th Brazilian Symposium on Computer Music SBCM 2017

São Paulo – Brazil 21

The [pd messagebuild] (fig. 6) pro-
cess organizes a big comma separated list, that
will route attribute-grouped arguments together,
sending then to a final receiver – see stage 5. in
the fig. 1. This final receiver routes the indi-
vidual messages to specific receivers that will be
named according to the attributes, preceded by
the unique abstraction wildcard $0, which is in-
stantiated locally for each abstraction in Pd. This
enables the use of multiple aAaA-enabled ab-
stractions side-by-side, and allows to create scal-
able, flexible and structured objects capable of
dealing with the instantiation arguments in a very
intuitive way.

sel 1 0

sel

r $0-resetmessage

set

t b f

test if firt argument is not an attribute

expr if($f1==1, 1, 0)

r $0-currentargn

symbol

sel f s @

first arguments can be given without attribute specification

add2 $1

t b b

t f f

t b b

symbol

sel f s @

spigot

symbol symbol

r $0-finalmessagegate

r $0-flagr $0-flag

r $0-attrVal

s $0-notFirst
r $0-notFirst

r $0-finalMessage

s $0-finalMessage

reset final message and
send it when it is rady

check which argument is being read

s $0-add2f

s $0-add2f

s $0-add2s

s $0-add2s

r $0-finalMessageSpigot

s $0-add2atNF

r $0-add2atNF r $0-add2atF

s $0-add2atF

s $0-finalMessageSpigot

s $0-finalMessageSpigot

r $0-attrVal

type of first argument:

if @, will be added to the first message (without a previou
comma as usual attributes)

first attribute: don't need a previous comma
not first attr.: we need a previous comma

s $0-canWeSend

r $0-canWeSend

att

addcomma, add2 $1 add2 $1

makefilename $0%s makefilename $0%s

s $0-arguments_as_messages

makefilename $0%s

if f or s, will just be added to the first message with
attribute @not@

symbol @not@

Figure 6: The [pd messagebuild] sub-
patch content.

4. Using aAaA: an example

aAaA is distributed with two abstractions.
aAaA-example.pd (fig. 7) uses the de-
scribed [pd aAaA-kernel] (fig. 1) mech-
anisms to create a table lookup synthesis pro-
cess with two amplitude modulation oscillators;
and aAaA-help.pdwhich instantiates the pre-
vious abstraction with a series of attributes and

arguments that are internally assigned to the re-
spective objects and data structures that are used
in the synthesis process.

r $0@LFO1

r $0@LFO2

r $0@not@

print not@

pd firstchunk

r $0@freq

osc~

unpack 0 0

*~
osc~

unpack 0 0

*~

*~

*~

r $0@sinesum

print @sinesum

print @LFO1
print @LFO2

print @freq

outlet~

inlet inlet

s $0@sinesum s $0@freq s $0@LFO1 s $0@LFO2

inlet inlet

or...
an attribute aware abstraction architecture allowing
arbitrary argument assignment.

aAaA_v.0.1

any_Arguments_and_Attributes

[see comments inside if you want to understand how it works]

to use aAaA in your project just copy this to your
abstraction pd aAaA-kerne

using_aAaA:_an_example
Using aAaA to generate table lookup oscillator with specific
sine components, frequency and LFO rates/depths.

1 receive arguments without attribute tags

2 receive attribute @sinesum ans its arguments

3 receive attribute @freq ans its argument

4 receive attribute @LFO1 and its arguments (mod. freq and
mod. depth)

(generates wavetable)

(stores wavetable)

inlets allow to override the init attributes/args

AM 1

AM 2

tabosc4~ $0-thisarr

5 receive attribute @LFO2 and its argument

pd licens

pd acknowledgemen

table $0-thisarr 1000

Figure 7: The aAaA-example.pd ab-
straction, using the aAaA
kernel to parse parameters
of a table lookup synthesis
process.

4.1. aAaA-example.pd

The aAaA-example.pd (fig. 7) ab-
straction uses the messages sent by the
[pd aAaA-kernel to control different
parameters of the synthesis algorithm. The first
attribute is @sinesum, with arguments that are
also programmed to be received without any
attribute tag. These arguments are internally
received by objects [r $0@sinesum] and
[r $0@not@] (a special tag used for argu-
ments without any attribute specification). They
are used in the sub-patch [pd firstchunk]
to populate the table $0-thisarr$,that will

SBCM 2017 16th Brazilian Symposium on Computer Music

22 São Paulo – Brazil

be continuously read by a quadratic interpo-
lating table oscillator ([tabosc4˜]) with a
frequency given by a floating number preceded
by the @freq attribute tag (and that will be
routed to the [r $0@freq] object).

The attributes @LFO1 and @LFO2 expect,
each one, two floating point arguments that con-
trol, respectively, the modulation frequency and
the modulation depth of two amplitude modu-
lation processes. These values are received by
the [r $0@LFO1] and the [r $0@LFO2] ob-
jects, being unpack and appropriately routed in-
ternally to drive the modulation oscillators.

4.2. aAaA-help.pd

The aAaA-help.pd abstraction (fig. 1)
exemplifies how objects created with the
aAaA-kernel attribute and argument parsing
mechanism can take advantage of the aAaA at-
tribute syntax.

Given that the aAaA-example.pd and the
aAaA-kernel processes use $0 wildcards –
which corresponde to individual numbers that
identify each abstraction instance – to name ob-
jects, tables and data structures, aAaA-enabled
abstractions don’t interfere in each other. In other
words, if two objects share the same attribute
tags names (in the given example, for instance,
the attribute @LFO1), only the internal receiver
identified by the individual number of @0 fol-
lowed by the attribute symbol @LFO1 (thus, the
receiver $0@LFO1) will receive the arguments
intended to be used internally.

5. Conclusion

aAaA is capable of expanding the coding
syntax of Pd without requiring any special li-
braries and extensions: a feature that allows,
among other things, that aAaA-enabled abstrac-
tions to be easily embedded in applications and
hardwares that use libpd as an audio process-
ing/synthesis framework. As the dynamical pro-
cess of parsing attributes and arguments occurs
in the instantiation stage of the abstractions, the
use of aAaA does not imply in any loss of per-
formance.

The same strategy to route @ initiated sym-
bols in aAaA could be used to recognize other
pseudo-types. It would be possible, for instance,
to use the commonly used hyphen symbol (-) to
designate flags that should be treated in a spe-
cial way. Likewise, one could designate a set of
symbols to instantiate special data structures like
matrices or trees.

aAaA is part of a larger set of abstractions, ob-
jects and resources currently being developed in
the Interdisciplinary Nucleus of Sound Commu-
nication (NICS). This set of resources are aimed
to expand the coding possibilities of Pd and are
designed to be easily adapted to specific circum-
stances and to be able to be embedded in hetero-
geneous platforms, applications, hardwares and
operational systems. In a more general perspec-
tive, the objective is to develop resources to de-
sign structured abstractions whose mechanisms
and general behavior can be specified in a more
structured way, just like code based computer
music languages usually feature.

6. Acknowledgments

aAaA is based in previous abstractions and
strategies developed by IOhannes m zmölnig that
were distributed in the Pd mail-list3.

References

[1] Miller Puckette. Etude de cas sur les logi-
ciels pour artistes: Max/MSP et Pure Data.
In David-Olivier Lartigaud, editor, Art++.
HYX, Orléans, July 2011.

[2] Peter Brinkmann, Dan Wilcox, Tal Kirsh-
boim, Richard Eakin, and Ryan Alexander.
Libpd: Past, Present, and Future of Embed-
ding Pure Data. PdCon2016˜, 2016.

[3] Peter Brinkmann. Making Musical Apps:
Real-Time Audio Synthesis on Android and
iOS. O’Reilly Media, Sebastopol, Calif, 1
edition edition, March 2012.

3Relevant discussions can be found at the following
archive links: https://lists.puredata.info/
pipermail/pd-list/2008-10/065465.html
and https://lists.puredata.info/
pipermail/pd-list/2016-08/115936.html.

16th Brazilian Symposium on Computer Music SBCM 2017

São Paulo – Brazil 23

[4] MSP reference - cycle˜ - sinusoidal oscilla-
tor. https://docs.cycling74.com/
max7/maxobject/cycle˜.

[5] Alexandre Torres Porres, Derek Kwan, and
Mathew Barber. Cloning Max/MSP Objects:
A Proposal for the Upgrade of Cyclone. Pd-
Con2016˜, 2016.

SBCM 2017 16th Brazilian Symposium on Computer Music

24 São Paulo – Brazil

