
Live Coding Console with Remote Audience into the web
Guilherme Martins Lunhani1, Flávio Luiz Schiavoni2

1Rua Abolição 403 – 18044-070, Sorocaba, SP

2Federal University of São João Del Rei (UFSJ)
São João Del Rei, Minas Gerais, Brazil

lunhanig@gmail.com, fls@ufsj.edu.br

Abstract
Live coding is a (not so) novel form of per-

formance based on computer programming lan-
guages. Since the emergence of Web Audio,
several initiatives managed to create applications
and programming environments on the web for
music programming and, why not, live coding
with music in web browsers. Even though run-
ning on the web, these environments run an indi-
vidual live coding application without audience
capability. This article describes the context, re-
flections and the development of a live coding
web environment and three approaches to cre-
ate a live coding environment on the web with
audience including an initial implementation and
some code development. These approaches are
conceptual and can be applied on other tools and
expand the live coding capability on the web.

1. Introduction
In the context of musical productions made

by artist-programmers using the textual program-
ming languages [1], Giovanni Mori [2, p.197]
defined the British term livecoding as a polyva-
lent technique of improvisation.

In academic context, the term appeared in
2003 [3], and in 2004, a set of rules was formal-
ized by British artist-programmers[4]. This set of
rules do not restrict any language expression. At
that time, the artistic artifacts fluctuated between
music, the audiovisual and dance.

Many livecoding into the web start to emerg-
ing from a largely discussion since the W3C
added the capability of real time audio process-
ing to web browsers [5]. There are many web
applications that can generate, process and ana-
lyze audio directly using JavaScript, hiding the
basic process into classes and functions.

Under this context, we developed a live DSP
console as a single client-side application, or in

other words, a prototype of a web CLI (Com-
mand Line Interface). This work aims to share
the current development thoughts and works fo-
cusing the creation of a web live coding environ-
ment with remote audience.

2. Web live coding environment with
remote audience
A basic webaudio application is developed in

Javascript and works only in the browser. This
approach was used in in most applications exis-
tents. A step forward to live coding on the web
is to try to create a programming environment
where the performance could be listened by an
audience like a streaming.

1st approach: Audio streams
Our first approach to a Live coding web en-

vironment with audience is to keep a connection
with the server and create an audio stream from
the application output. This approach could use
a stream server, like Icecast or ShoutCast to dis-
tribute the live performance audio stream. The
advantage of using one of these servers is that the
audience could use any application that connects
to these stream servers and does not have to use
a web browser to listen the live coding perfor-
mance. On the live coding environment, a small
change is necessary adding a stream object on
the audio route to make an audio stream to the
server.

2nd approach: Audio Stream + code sharing
Our second approach is to send the code de-

veloped on the environment with the audio pa-
rameters and configuration to the server. The
server would run the code locally and send the
audio output to audio stream instead of sending
it to audio output.

Thus, clients could connect to server audio
stream, that also can be an Icecast / Shoutcast

SBCM 2017 16th Brazilian Symposium on Computer Music

162 São Paulo – Brazil



instance, and hear the living performance. The
main difference here is a reduced bandwidth be-
tween the live Coder and the server.
3rd approach: Code Sharing

Our last approach is to send the code to the
server to be shared with the audience. In this
approach, the audience computer should run the
same application as the live coder and audi-
ence computer would synthesize locally the au-
dio from the shared code. This approach uses
less bandwidth and allow the audience to inter-
act with the source code and learn how the code
was written. The server implementation is close
to a white board, a server to share text among dif-
ferent clients. Since the server does not need to
run Javascript code, it can be implemented in any
serve-side language like PHP or JSP.

3. Approaches comparison
The first comparison among the three ap-

proaches is the shared data type. On the first
approach, it is shared audio, the second approach
shares code between the live coder and the server
and audio between the server and audience and
the third approach shares only code.

Since the shared data type is different, on the
first approach the code is private and the live
coder does not need to share it. She second ap-
proach is semi private because it is sent to the
server and the server could save the code, publish
it to the audience during the performance or later.
The audience could read the code but a change
on the code would not change the local sound
since it is not processed locally but received al-
ready processed. On the third approach the code
is shared and real time published to the audience.
The audience could change the code and affect
the hearing experience and also re share the code
on the web.

The presence of the code can change the hear-
ing experience. Both, first and second approach
leads to a passive hearing while the third ap-
proach allows the code reading with the listen-
ing. Audience can notice programming changes,
code errors and typos and it can affect the hear-
ing experience.

Lastly, the client program influences the hear-
ing experience but can simplify the audience lis-

tening. First and second approaches can use
a stream cast application, like VLC, while the
third approach is more restrictive and demands
a browser as the client application.
4. Conclusion

This paper presented 3 approaches to cre-
ate a live coding web environment with audi-
ence. These approaches are being developed our
work in progress, referring to the works of Pietro
Grossi and Max Mathews, considered by these
authors as premature live coding cases.

We planned to stream or pipe the audio to a
streaming server, by a streaming server channel
choose by the user, or by WebRTC, but this fea-
ture is incomplete. The presented application is
under development1 and has, among the com-
plete and incomplete features, a server that saves
a code and processes it into an audio file. Our
current implementation reflects an agreement be-
tween the second and third approaches.

It is part of Future works to implement the
three approaches here presented to have a better
framework to test and validate user’s experience
in each scenario.
References
[1] Alex McLean. Artist-Programmers and Pro-

gramming Languages for the Arts. PhD the-
sis, Department of Computing, Goldsmiths,
University of London, October 2011.

[2] Giovanni Mori. Analysing live coding with
etnographical approach. In ICLC2015 Pro-
ceedings, pages 117–124, 2015.

[3] Nick Collins, Alex McLean, Julian Rohrhu-
ber, and Adrian Ward. Live coding in laptop
performance. Organised Sound, 8(3):321–
330, 2003.

[4] Adrian Ward, Julian Rohrhuber, Fredrik
Olofson, Alex Mclean, Dave Griffiths, Nick
Collins, and Amy Alexander. Live algo-
rithm programming and temporary organiza-
tion for its promotion, 2004.

[5] Lonce Wyse and Srikumar Subramanian.
The viability of the web browser as a com-
puter music platform. Computer Music Jour-
nal, 37(4):10–23, 2013.

1Available on:
https://github.com/lunhg/termpot.

16th Brazilian Symposium on Computer Music SBCM 2017

São Paulo – Brazil 163


