Timbre spaces with sparse autoencoders

Pablo E. Riera¹, Manuel C. Eguíα¹, Matías Zabaljáuregui²

¹Laboratorio de acústica y percepción sonora
Escuela Universitaria de Artes, Universidad Nacional de Quilmes
Roque Sáenz Peña 352, Bernal Buenos Aires, Argentina

²Laboratorio de Inteligencia Artificial Aplicada
Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
Pabellón I, Ciudad Universitaria, Ciudad de Buenos Aires, Argentina.

Abstract

Timbre perception studies emphasize the multidimensional nature of timbre and many rely on dimensionality reduction techniques to visualize perceptual similarity evaluations or sound descriptors that encompass timbre perception. In this work, we explore the uses of sparse autoencoders to perform unsupervised learning and nonlinear dimensionality reduction to extract a spectral code representation that is used for timbre analysis and visualization. Using only one music fragment in the autoencoder learning process generates an overfitted reconstruction but gives a low dimensional neuronal activity pattern which encodes all the sound spectrum information and could be used for synthesis as a neuronal music score.

1. Introduction

Timbre is widely recognized as a highly complex and multidimensional percept that cannot be (or hardly can be) accounted in terms of a few quantitative descriptors [1][2]. The process of timbre perception is closely related to the tasks of sound identification and classification and is concomitant to the hierarchical organization of sensory systems [3]. A common approach to tackle this issue in computational studies consists of calculating some sound descriptors relevant to timbre perception, such as Mel-frequency Cepstral Coefficients (MFCC) [4] or Spectral Contrast [5] and then applying dimensionality reduction techniques for visualization, as multidimensional scaling [6], isomaps [7] and self-organized maps [8], among others.

On the other hand, recent advances in deep neural networks, in which several layers of nodes are used to build up progressively more abstract representations of the inputs, have contributed to develop a new approach to this problem, yielded promising results in music related tasks such as instrument classification [9][10], timbre analysis [11], genre classification [12][13], among others, [14][15] and sample based sound synthesis [16]. Several architectures and learning procedures have proven successful at processing audio data, in particular, we can mention recent uses of autoencoders in audio synthesis [17][18], statistical parametric speech synthesis [19], adaptive reduced-dimensionality equalization [20], and denoising and dereverberation [21]. As an alternative to autoencoders, linear methods like sparse coding and nonnegative matrix factorization have also been used for sound classification [22] and source separation [23].

Autoencoders are a type of neural network having a coding stage and a decoding stage, in such a way that a bottleneck is generated in the middle layer (see Figure 1). Usually, the learning strategy involves minimizing the difference between the input and the coded-decode output. This learning procedure could be used fo nonlinear dimensionality reduction [24] or nonlinear PCA [25][26].

In this work, we explore the use of sparse autoencoders with spectral inputs for efficiently learning timbre representation and synthesis, in a similar fashion to [18]. In contrast to this work, we perform a complete unsupervised learning with one musical or audio fragment at a time. This generates a network that overfits the audio
fragment used, and focus on nonlinear dimensionality reduction. In addition, a sparse penalty is included in the cost function in order to favor a sparser representation in the code layer. When using the system for sound synthesis, the spectral representation of the input needs to be invertible and bear an appropriate method for phase reconstruction [27].

In the next section, we describe the autoencoder structure and the learning methods. In the results section, we compare timbre spaces generated with the autoencoder code layer to those generated with MFCC and Spectral Contrast as descriptors.

2. Methods

The log-magnitude power spectrogram of a monaural audio fragment was used as input, after resampling it to a lower sampling rate (in order to make the computations lighter) and computing the short-time Fourier transform (STFT) with fixed window and step length. Every STFT window was considered as a data sample (number of observations), thus the number of frequency bins was equal to the number of input neurons (number of features).

The autoencoder was built with tied weights in the coding and decoding stages. The numbers of layers and neurons per layer were explored manually before adopting a simplified structure in which the number of neurons of each layer was reduced by a factor of two until a minimum number is obtained in the code layer, and for the decoding stage, the numbers are increased by the same factor. This architecture allowed a reasonable learning performance. In concrete, the number of neurons per layer finally adopted was 2^k $k = 10, 9, 7, 5, 3, 5, 7, 9, 10$, hence the code layer has only 8 neurons.

Several activation functions were tested. The results shown here were obtained using a softplus function and min max normalization. Similar results were obtained with tanh function and z-score normalization.

The cost function consisted of three terms:

$$ E = \frac{1}{2N_0} \sum_{n=1}^{N_0} (X_n - Y_n)^2 $$

$$ - \alpha \frac{N_z}{N_z} \sum_{n=1}^{N_z} \hat{Z}_n \log(\hat{Z}_n^2) $$

$$ + \lambda \frac{1}{2K} \sum_{k=1}^{K} \left(\|W_k\|_2^2 + \|b_k\|_2^2 \right) $$

The first term corresponds to the averaged squared difference between the input X and the output Y of the autoencoder. N_0 denotes the size of input and output layers. The second term corresponds to a sparse regularization component, provided by the entropy of the normalized activity of the code layer $\sum(\hat{Z}) = 1$. N_z stands for the code layer size. Finally, the third term includes a $L2$ regularization on the weights and bias. K corresponds to the number of weight matrices.

Before training the complete autoencoder, a pretraining [24] stage was performed on single hidden layer autoencoders, where the input of a single layer of the autoencoder was the code layer activity of the previous one. The network was optimized with Adam method [28].

After the training, the analysis consisted on inspecting the activity of the code layer. This activity plus the weights and bias contain all the information for reconstructing the original audio signal. In a general sense, this neuronal activity can be put into correspondence to a timbre score.
Table 1: Hyper-parameters of the sparse autoencoder

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling frequency</td>
<td>22050</td>
</tr>
<tr>
<td>Window size</td>
<td>1024 (46 ms)</td>
</tr>
<tr>
<td>Step size</td>
<td>256 (11 ms)</td>
</tr>
<tr>
<td>Number of spectrum samples</td>
<td>5168</td>
</tr>
<tr>
<td>Layers dimensions</td>
<td>2^k</td>
</tr>
<tr>
<td></td>
<td>$k = 10, 9, 7, 5$</td>
</tr>
<tr>
<td></td>
<td>$3, 5, 7, 9, 10$</td>
</tr>
<tr>
<td>Activation function</td>
<td>softplus</td>
</tr>
<tr>
<td>α</td>
<td>0.8</td>
</tr>
<tr>
<td>λ</td>
<td>0.005</td>
</tr>
<tr>
<td>Learning rate</td>
<td>0.005</td>
</tr>
<tr>
<td>Batch size</td>
<td>200</td>
</tr>
</tbody>
</table>

Of the musical fragment used as input, or a trajectory on the timbre space of the audio signal.

For visualization of the timbre space, reduction of the dimensionality of the activations of the code layer was done by principal components analysis (PCA). Finally, for the sonification of the reconstructed spectrogram, we used the original phase information. This was done with the aim of preserving the audio quality, but phase reconstruction algorithms could be used as well.

3. Results

The results displayed here are obtained using the first 7 cycles of Grisey’s *Partiels* [29] as input. We have chosen this example because, on one hand, this piece has an outstanding historic relevance in the development of timbre in 20th-century music, and on the other hand, it behaves as a good data set, mainly due to the fact that is basically composed by repetitions of similar sounds with variations.

The hyper-parameters of the autoencoder used for this results are shown in table 1.

In figure 2, we show the spectrogram of the original audio signal along with the reconstruction obtained as output. Despite being a highly detailed reconstruction, the output displays fewer variations than the original, due to the fact that the autoencoder has some denoising properties.

In figure 3 we display the neural activity pattern of the code layer. The sparse regularization cost forces a sparse activity pattern, and some neurons ended with null activation. Nonetheless, different runs of the optimization could end with different activation patterns (and same overall cost), due to random initial weights and bias.

Figure 4, shows on the top row, the timbre space generated by three principal components of standard timbre descriptors (in this case a combination of 20 MFCC and 7 Spectral Contrast coefficients). The color shades were obtained by k-means clustering on those descriptors. Seven clusters were used to guide the visual inspection of both timbre spaces and to match the different regions. In the middle row are the
PCA components for the code layer activity pattern with the same color clustering. The bottom row uses its own clusters instead. It could be observed that some clusters remain close in both top and middle row timbre spaces, but there are differences with those clusters generated by the code layer in the bottom plot, more structure arise. This is reflected also in the difference between the third PCA component from the timbre features and the third component of the code layer. The standard timbre descriptors elicit a more compacted space than from the autoencoder which has a torn structure.

In the first 7 cycles of Partiels, an alternating pattern is produced between the trombone and contrabass low notes and the strings and woods high notes that generate a cyclic trajectory in the timbre space which is present in both timbre spaces (timbre features and code layer).

4. Conclusions

We presented a computational timbre analysis method involving a sparse autoencoder. When using this type of neural networks, the code layer is able to learn a meaningful representation that is capable of reconstructing the original input data, the sound spectrum in the present work. The activity of the code layer is used for timbre analysis and it behaves like an audio specific, a small set of sound descriptors.

The results presented here focused on learning from a single sound or music fragment, but the same approach could be expanded to learning from a corpus of music fragments. Different network architectures may be necessary and also a different learning paradigm like classification [18].

Regarding the synthesis capabilities of the system, when trained with a music fragment, we consider the code layer activities as a neural score that interprets the music. This could be useful for timbre-oriented audio processing and source separation.

Generated timbre spaces by the autoencoder shown more structure than those generated by standard timbre descriptors. For a complete analysis of the timbre space, a perceptual measurement or an exhaustive listening task is needed by comparing the clusters and their relative locations.

5. References

References

[22] Emmanouil Benetos, Margarita Kotti, and Constantine Kotropoulos. Musical in-

