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Abstract
Learning to play music is mostly based on the

master-apprentice model in which modern tech-
nologies are rarely employed and students’ inter-
action and socialisation is often restricted to short
and punctual contact with the teacher. This often
makes musical learning a lonely experience, re-
sulting in high abandonment rates. In the context
of TELMI, an international project, which aims
to addresses these issues by providing new multi-
modal interaction paradigms for music learning
and to develop assistive, self-learning, real-time
feedback, complementary to traditional teaching,
this paper focuses on the computational mod-
elling of expressive music performance as a tool
for music learning. We record a professional vi-
olinist and apply machine learning techniques to
induce an expressive model the recordings. We
use this model to generate feedback on expres-
sive aspects of arbitrary pieces to violin students.

1. Introduction
Music education requires a long learning tra-

jectory and intensive practice. Learning to play
music is mostly based on the master-apprentice
model in which the teacher mainly gives verbal
feedback on the performance of the student. In
such a learning model, modern technologies are
rarely employed and almost never go beyond au-
dio and video recording. In addition, the stu-
dent’s interaction and socialisation is often re-
stricted to short and punctual contact with the
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teacher followed by long periods of self-study,
which often makes musical learning a lonely ex-
perience, resulting in high abandonment rates
[1].

One of the most challenging skills that stu-
dents must learn during their learning process is
the ability to play expressively. This is usually
learnt by imitating expert performers to grad-
ually develop the own playing style. This is
normally a long process where there is no gen-
eral rules on how to go about it. Furthermore
expressive instructions often vary considerably
from teacher to teacher. TELMI is an interna-
tional effort to address the challenges music in-
strument education poses. Concretely, TELMI
aims to design and implement new multi-modal
interaction paradigms and prototypes for mu-
sic learning and training based on state-of-the-
art audio processing and motion capture tech-
nologies, and to create a publicly available ref-
erence database of multimodal recordings with
data analytics. This database, no matter how
extended it is, will inevitably be non-exhaustive
in the sense that it will fail to contain all pos-
sible pieces that any student may want to prac-
tice. The work described in this paper aims at ex-
trapolating the recordings in the database by pro-
viding general expressive computational models
able to generate feedback about expressive is-
sues in arbitrary music pieces. The multi-modal
recordings in the database are extended by apply-
ing machine learning techniques using database
recordings as training data. We use sound analy-
sis techniques based on spectral models [15] for
extracting high-level symbolic features from the
recordings. In particular, for characterising the
performances used in this work, we are inter-
ested in inter-note features representing informa-
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tion about the music context in which expressive
events occur. Once the relevant high-level infor-
mation is extracted we apply machine learning
techniques [9] to automatically discover regular-
ities and expressive patterns for each performer.
We use these regularities and patterns in order to
identify a particular performer in a given audio
recording.

2. Background

Understanding and formalizing expressive
music performance is an extremely challenging
problem which in the past has been studied from
different perspectives, e.g. [14], [4], [2]. The
main approaches to empirically studying expres-
sive performance have been based on statistical
analysis (e.g. [12]), mathematical modeling (e.g.
[17]), and analysis-by-synthesis (e.g. [3]). In all
these approaches, it is a person who is responsi-
ble for devising a theory or mathematical model
which captures different aspects of musical ex-
pressive performance. The theory or model is
later tested on real performance data in order to
determine its accuracy. The majority of the re-
search on expressive music performance has fo-
cused on the performance of musical material for
which notation (i.e. a score) is available, thus
providing unambiguous performance goals. Ex-
pressive performance studies have also been very
much focused on (classical) piano performance
in which pitch and timing measurements are sim-
plified.

Previous research addressing expressive mu-
sic performance using machine learning tech-
niques has included a number of approaches.
Lopez de Mantaras et al. [6] report on SaxEx,
a performance system capable of generating ex-
pressive solo saxophone performances in Jazz.
One limitation of their system is that it is inca-
pable of explaining the predictions it makes and
it is unable to handle melody alterations, e.g. or-
namentations.

Ramirez et al. [11] have explored and com-
pared diverse machine learning methods for ob-
taining expressive music performance models for
Jazz saxophone that are capable of both generat-
ing expressive performances and explaining the

expressive transformations they produce. They
propose an expressive performance system based
on inductive logic programming which induces a
set of first order logic rules that capture expres-
sive transformation both at an inter-note level
(e.g. note duration, loudness) and at an intra-
note level (e.g. note attack, sustain). Based on
the theory generated by the set of rules, they im-
plemented a melody synthesis component which
generates expressive monophonic output (MIDI
or audio) from inexpressive melody MIDI de-
scriptions. With the exception of the work by
Lopez de Mantaras et al and Ramirez et al, most
of the research in expressive performance using
machine learning techniques has focused on clas-
sical piano music where often the tempo of the
performed pieces is not constant. The works fo-
cused on classical piano have focused on global
tempo and loudness transformations while we
are interested in note-level tempo and loudness
transformations.

3. Melodic description
First of all, we perform a spectral analysis of

a portion of sound, called analysis frame, whose
size is a parameter of the algorithm. This spectral
analysis consists of multiplying the audio frame
with an appropriate analysis window and per-
forming a Discrete Fourier Transform (DFT) to
obtain its spectrum. In this case, we use a frame
width of 46 ms, an overlap factor of 50%, and
a Keiser-Bessel 25dB window. Then, we com-
pute a set of low-level descriptors for each spec-
trum: energy and an estimation of the funda-
mental frequency. From these low-level descrip-
tors we perform a note segmentation procedure.
Once the note boundaries are known, the note de-
scriptors are computed from the low-level values.
the main low-level descriptors used to charac-
terise note-level expressive performance are in-
stantaneous energy and fundamental frequency.

Energy computation. The energy descriptor
is computed on the spectral domain, using the
values of the amplitude spectrum at each anal-
ysis frame. In addition, energy is computed in
different frequency bands as defined in [5], and
these values are used by the algorithm for note
segmentation.
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Fundamental frequency estimation. For the
estimation of the instantaneous fundamental fre-
quency we use a harmonic matching model de-
rived from the Two-Way Mismatch procedure
(TWM) [7]. For each fundamental frequency
candidate, mismatches between the harmonics
generated and the measured partials frequencies
are averaged over a fixed subset of the available
partials. A weighting scheme is used to make
the procedure robust to the presence of noise or
absence of certain partials in the spectral data.
The solution presented in [7] employs two mis-
match error calculations. The first one is based
on the frequency difference between each partial
in the measured sequence and its nearest neigh-
bour in the predicted sequence. The second is
based on the mismatch between each harmonic
in the predicted sequence and its nearest partial
neighbour in the measured sequence. This two-
way mismatch helps to avoid octave errors by ap-
plying a penalty for partials that are present in the
measured data but are not predicted, and also for
partials whose presence is predicted but which
do not actually appear in the measured sequence.
The TWM mismatch procedure has also the ben-
efit that the effect of any spurious components
or partial missing from the measurement can be
counteracted by the presence of uncorrupted par-
tials in the same frame.

Note segmentation is performed using a set
of frame descriptors, which are energy compu-
tation in different frequency bands and funda-
mental frequency. Energy onsets are first de-
tected following a band-wise algorithm that uses
some psycho-acoustical knowledge [5]. In a sec-
ond step, fundamental frequency transitions are
also detected. Finally, both results are merged to
find the note boundaries (onset and offset infor-
mation).

Note descriptors. We compute note descrip-
tors using the note boundaries and the low-level
descriptors values. The low-level descriptors as-
sociated to a note segment are computed by aver-
aging the frame values within this note segment.
Pitch histograms have been used to compute the
pitch note and the fundamental frequency that
represents each note segment, as found in [8].
This is done to avoid taking into account mis-

taken frames in the fundamental frequency mean
computation.

Musical Analysis. It is widely recognized
that humans perform music considering a num-
ber of abstract musical structures. In order to
provide an abstract structure for the recordings
under study, we decided to use Narmour’s theory
of perception and cognition of melodies [10] to
analyze the performances.

4. Expressive Performance Modeling

4.1. Training Data

In this work we are focused on Celtic jigs,
fast tunes but slower that reels, that usually con-
sist of eighth notes in a ternary time signature,
with strong accents at each beat. The training
data used in our experimental investigations are
monophonic recordings of nine Celtic jigs per-
formed by a professional violinist. Apart from
the tempo (he played following a metronome),
the musicians were not given any particular in-
structions on how to perform the pieces.

4.2. Note Features

The note features represent both properties of
the note itself and aspects of the musical context
in which the note appears. Information about the
note includes note pitch and note duration, while
information about its melodic context includes
the relative pitch and duration of the neighbor-
ing notes (i.e. previous and following notes)
as well as the Narmour structures to which the
note belongs. The note’s Narmour structures are
computed by performing the musical analysis de-
scribed before. Thus, each performed note is
characterized by the tuple

(Pitch, Dur, PrevPitch, PrevDur, NextPitch,
NextDur, Nar1, Nar2, Nar3)

4.3. Algorithm

We apply Tildes top-down decision tree in-
duction algorithm ([1]). Tilde can be considered
as a first order logic extension of the C4.5 deci-
sion tree algorithm: instead of testing attribute
values at the nodes of the tree, Tilde tests logi-
cal predicates. This provides the advantages of
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both propositional decision trees (i.e. efficiency
and pruning techniques) and the use of first order
logic (i.e. increased expressiveness). The musi-
cal context of each note is defined by predicates
context and narmour. context specifies the note
features described above and narmour specifies
the Narmour groups to which a particular note
belongs, along with its position within a partic-
ular group. Expressive deviations in the perfor-
mances are encoded using predicates stretch and
dynamics. stretch specifies the stretch factor of
a given note with regard to its duration in the
score and dynamics specifies the mean energy of
a given note. The temporal aspect of music is
encoded via the predicates pred and succ. For in-
stance, succ(A,B,C,D) indicates that note in po-
sition D in the excerpt indexed by the tuple(A,B)
follows note C.

4.4. Results

We evaluated the expressive performance
model obtaining correlation coefficients of 0.88
and 0.83 for the duration transformation and note
dynamics prediction tasks, respectively. These
numbers were obtained by performing 10-fold
cross validation on the training data. The in-
duced model seem to capture accurately the ex-
pressive transformations the musician introduce
in the performances. Figure 1 contrasts the note
duration deviations predicted by the model and
the deviations performed by the violinist.

Figure 1: Note deviation ratio for a tune
with 89 notes. Comparison
between performed and pre-
dicted by the expressive per-
formance model

We have implemented a prototype, which al-
lows students to visualize the score, the expres-
sive performance generated by the computational
model, and their own performance. The pro-
totype allows students to compare their perfor-
mances with the target performance in terms of
duration, and/or energy in real-time.

Figure 2: Visualization prototype

5. Conclusion

We applied machine learning techniques to
learn computational models of music expression
in violin performances. The aim is to use this
models in a music learning prototype for teach-
ing students how to play expressively. The in-
duced models seem to capture accurately the
expressive transformations the musician intro-
duce in the performances. The implication of
this work is that its outcome has the potential
to contribute to the engagement of musicians in
the community by making more appealing music
practice and instrument training.
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