
A Probabilistic Model For Recommending Music
Based on Acoustic Features and Social Data

Rodrigo C. Borges1 , Marcelo Queiroz1∗

1Grupo de Computação Musical - IME - USP
Av. Prof. Luciano Gualberto, 158, tv. 3 – 05508-900 São Paulo, SP

rcborges@ime.usp.br, mqz@ime.usp.br

Abstract

The “Cold Start” problem is a well known is-
sue in Collaborative Filtering recommendation
systems, associated to the moment when a new
item or user is added to a given collection, be-
cause the system has no historical information
of interaction between existing and new elements
and it still need to incorporate these elements into
the recommendation algorithm. This work ad-
dresses one possible solution for the case where
new songs are added to a dataset of a music
recommendation system, by proposing a proba-
bilistic model for inference based on the songs’
acoustic/timbre features. This model was first
proposed for tagging music with semantic labels
but is here suggested as being suitable for pre-
dicting user interactions with new songs. The
experiments were conducted using a selection of
Brazilian popular music and the results show that
the proposed method compares favorably to Lo-
gistic Regression.

1. Introduction

Recommending music automatically has be-
came a popular issue in the last decades since
a huge amount of digital media became avail-
able as on-line services [1, 2]. The most com-
mon technique used today for this purpose is
called Collaborative Filtering [3], and it works by
matching similar user listening profiles. If user A
listened to a song that user B with a similar lis-
tening profile hasn’t, it is assumed that there is
a high probability that user B would react posi-
tively to this song. But this approach has a weak-
ness known as the “cold start” problem, which
corresponds to a new song with no records of
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having being listened by existing users or a new
user with no records of having listened to exist-
ing songs.

One of the possible solutions for this problem
is to combine acoustic features extracted from
the songs and past listening behavior, hopefully
finding a statistical representation of the tim-
bre content of the listened songs [4] that would
somehow correlate with listening habits. If a new
song is added to the set and its acoustic content
is close enough to what has been learned by the
recommender as part of a user’s listening habit,
then it might be considered as a recommendation
candidate.

In this paper we apply a probabilistic model
named Codeword Bernoulli Average Model [5]
for predicting listening behaviors to new songs.
This model was first proposed for tagging mu-
sic with semantic labels, and attempts to pre-
dict the probability that a binary tag applies to a
song, based on a vector-quantized representation
of that song’s audio (Figure 1). This is achieved
through automatically learning a latent variable
that represents some statistical relationship be-
tween the audio and the tag, which in this case
are timbre representations and user listening be-
haviors.

This text is structured as follows. We start
briefly presenting previous probabilistic models
proposed for the same problem. The dataset
used in our experiment is then described, namely
the songs presented to the listeners and from
which acoustic features were extracted. Then
we present the experimental methodology, de-
tailing the procedure of collecting listening data,
the application used and how this information
was stored. Feature extraction is explained in
detail as well as the vector-quantized representa-
tion used for the model. The Codeword Bernoulli
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Figure 1: An Illustration of the problem
of retrieving listening data
from acoustic features.

Average Model is then briefly described, and we
discuss how to apply it to sparse listening data.
The evaluation of the model is presented next,
along with a comparison to a Logistic Regres-
sion baseline, discussing how far this approach
can be further explored.

2. Related Work
Some efforts on using acoustic features com-

bined with collaborative filtering were already
reported, some of them applying probabilistic
modeling. Yoshii et al. [6] has proposed using
GMM for representing the MFCC information,
and also an e-commerce interaction database as
corresponding to social data. A group of la-
tent variables were proposed as corresponding to
genres, among which the user would choose, and
from which a piece of music was stochastically
selected. Pseudo-genres are considered as pro-
viding recommendation diversity but also as dif-
fering from the kind of prediction desired here.

Campos et al. [4] propose a topological model
based on Bayesian networks from where the de-
gree of each recommending technique was auto-
matically selected. This model could operate ex-
clusively as collaborative-filtering or as content-
based, using it for finding good items as well as
for predicting user ratings.

Codeword Bernoulli Average Model was first
presented in 2009 as a technique for automati-
cally tagging music [5]. In this context the chal-
lenge was separated in two parts: annotating mu-
sic that has no associated tags, and retrieving
songs from a given tag. In both cases a subset
should be returned sorted by relevance of the re-

turned items, where the ordering had no relation-
ship whatsoever with the binary tags.

3. Data Set

The dataset we used in the experiment is com-
posed of 1199 Brazilian popular songs taken
from a selection known as ”100 best records
of Brazilian music” [7], published in 2007 by
the specialized music magazine Rolling Stone
and representing the opinions of 60 music re-
searchers, producers and journalists based on
how influential they thought these records were
to others artists. The recordings release dates
vary from 1950 to 2003, which configures a het-
erogeneous group of music examples that should
result in considerably different listening behavior
patterns.

4. Listening Data

The listening data was collected between
March and May 2017, having 10 listeners with
ages varying from 25 to 60 years old. An
Android application (Figure 2) was developed
specifically for this experiment and when ini-
tialized, it selected randomly any song from the
dataset and started playing. The user could lis-
ten to it or jump to the next song. This resulted
in a sparse matrix counting how many times each
user listened to each music until its end. It should
be made clear that a count of 0 could either mean
that the user was never exposed to a song, or that
she or he skipped the song before reaching its
end.

There were around 1000 complete song repro-
ductions during this period, but only four listen-
ers listened to a reasonable sample of the whole
dataset (at least 10% of the number of songs),
and for this reason these were the only subjects
considered in the analysis.

The listening counting matrix was used to de-
fine a binary matrix representing which user had
listened to which song to the end (regardless
of how many times). This matrix relates users
and songs through a binary correspondence that
might be used as indicative of a user’s willing-
ness to hear to a song; again a value of 0 should
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Figure 2: The application for collecting
listening data.

not be understood as any negative disposition be-
tween a user and a song, because the user might
not have been given the chance of listening to
that song. This ambiguity is considered in the
discussion and will be addressed in future work.

5. Feature Extraction
The MFCC acoustic descriptor was consid-

ered as a suitable representation for timbre as-
pects of songs, and was extracted using an open
source Python library called Librosa 1. The
MFCC data was extracted with 13 coefficients,
using windows of 2048 samples and 75% over-
lap between windows. As the number of win-
dows depend on the duration of the song, and we
needed a uniform representation for the dataset,
we adopted a Vector Quantized Representation to
solve this problem.

5.1. Vector Quantized (VQ) Representation

VQ is a technique first applied in data com-
pression that considers a group of selected items
for building a general feature space, building his-
tograms to describe a large collection according
to the number of members best described by each
selected item. For this specific case, VQ: (i) takes
all MFCC data extracted from every song in the
database and define K centroids using Kmeans;
(ii) takes each song and verify for each of its
MFCC frames which of the K centroids is closest
to it; (iii) produces a fixed size histogram for each

1https://github.com/librosa/librosa

song, representing how many MFCC frames are
best described by each centroid.

One thing that it is worth mentioning is that
the feature space is defined by all MFCC vec-
tors extracted from the dataset, and how these
MFCCs are clustered in K centroids. When a
new song is added to the dataset, this feature
space should be recalculated, possibly defining
a new group of centroids and corresponding his-
tograms for each song.

6. Codeword Bernoulli Average (CBA)
Model
Our CBA model assumes a collection of bi-

nary random variables y with yju ∈ {0, 1}, indi-
cating whether or not user u has listened to song
j. The goal is to estimate a set of values for a
Bernoulli parameters β that will maximize the
likelihood p(y|n, β) of the listened song associ-
ated to the VQ centroids counts n and the param-
eters β. It uses the Expectation Maximization
(EM) algorithm for maximum likelihood estima-
tion. Each EM iteration has two steps: first the
Expectation that corresponds to:

hjuk =





njkβku∑K
i=1 njiβiu

if yju = 1

njk(1− βku)∑K
i=1 nji(1− βiu)

if yju = 0,

(1)

followed by the Maximization step which corre-
sponds to:

βku =

∑
j hjukyju∑
j hjuk

. (2)

EM should stop iterating when the difference
between two consecutive β matrices reaches a
threshold value. When this happens we have
found a β under which the training data has be-
come more likely.

This results in a β matrix with dimensions
given by the number of users (U ) and the num-
ber of centroids (K), representing the statistical
relationship between users and centroids through
a Bernoulli distribution.
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6.1. Generalization

The result can then be generalized to new
songs by simply multiplying its VQ representa-
tion vector by the corresponding column from
the β matrix. The probability of a new song be-
ing heard given its feature vector is given by:

p(yju = 1|nj,β) =
1

Nj

∑

k

njkβku (3)

where the normalization Nj represents how
many MFCC windows were extracted from this
specific song.

7. Evaluation
MFCC data was extracted from all 1199

songs, resulting in 10.844.508 feature vectors.
These vectors were grouped in 5, 10, 25, 50, 100
and 200 centroids, in order to compare exper-
imentally VQ representations of several orders.
The listening information was then concatenated
with each timbre vector in order to have all data
contained in one single matrix.

Each of the following was performed inde-
pendently 20 times:

• Data matrix rows were shuffled;
• Data is then split in training and test sub-

sets corresponding to 80% and 20% of
the whole set. Listening information is
separated and acoustic features data is
normalized by the number of MFCCs ex-
tracted of each song;
• For the Logistic Regression the first sub-

set was used to train the model, and
the second for testing. Predictions were
recorded in a text file;
• For the CBA the training subset was used

for learning the β matrix, and the test
subset for generalizing through equation
3;
• Predictions were recorded in a text file;
• F-measure, Precision, Recall and AROC

values were calculated comparing predic-
tions and true test values. The threshold
for considering the predicted probability
as 0 or 1 was learned from the training
data;

• A random vector was generated and also
compared to true values;
• Performance measurements were

recorded in a log file.

CBA should stop iterating the learning loop
once the difference between two consecutive ma-
trices was above 1% of the number of centroids.
Logistic Regression was chosen as a baseline ref-
erence for comparison purposes only, and the re-
sults are presented in Table 1.

7.1. Results Discussion

Recall, precision, f-measure and area under
the receiver-operator curve (AROC) are standard
metrics for evaluating binary classifiers [8]. Re-
call is obtained as the relation between true pos-
itive and the sum of true positives and false neg-
atives (R=tp/(tp+fn)); Precision is the relation
between true positives and sum of true posi-
tives and false positives (P=tp/(tp+fp)); and f-
measure is the harmonic mean between both
(F=2PR/(P+R)). AROC is the area under the
curve representing true positive rate against the
false positive rate.

The larger recall and f-measure values were
obtained for the case of CBA with the lowest
value for K. Here it means that 5 centroids is
the best scenario where the relationship between
MFCC representations and user behaviors was
best captured in the β matrix, possibly meaning
that a better prediction model would not use so
many latent variables (the MFCC centroids) to
express the recomendation as a function of the
MFCC histograms.

We can also see that both f-measure and re-
call values decrease as functions of K, for both
CBA and Logistic Regression. This might be
interpreted in terms of a form of overfitting of
the model to a given (training) dataset which is
not able to perform equally well on a different
(test) dataset. Overfitting would certainly explain
the monotonicity of these metrics, where both
f-measure and recall get progressively worse as
more MFCC centroids are used to model each
user’s listening preference.

Precision, on the other hand does not display a
very clear trend, although it is marginally higher
for Logistic Regression than it is for CBA. The
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Recall Precision F-Measure AROC
K=5 Log. Reg. 0.516 (0.117) 0.125 (0.016) 0.201 0.525 (0.023)

CBA 0.677 (0.136) 0.119 (0.016) 0.203 0.513 (0.028)
K = 10 Log. Reg. 0.405 (0.070) 0.113 (0.013) 0.177 0.517 (0.022)

CBA 0.677 (0.119) 0.112 (0.010) 0.192 0.509 (0.045)
K = 25 Log. Reg. 0.300 (0.063) 0.115 (0.021) 0.166 0.513 (0.027)

CBA 0.621 (0.121) 0.113 (0.015) 0.191 0.504 (0.027)
K = 50 Log. Reg 0.236 (0.051) 0.119 (0.018) 0.158 0.505 (0.028)

CBA 0.612 (0.113) 0.113 (0.012) 0.190 0.513 (0.021)
K = 100 Log. Reg. 0.187 (0.053) 0.117 (0.023) 0.144 0.508 (0.031)

CBA 0.572 (0.105) 0.110 (0.012) 0.184 0.511 (0.031)
K = 200 Log. Reg. 0.166 (0.049) 0.133 (0.025) 0.148 0.515 (0.028)

CBA 0.390 (0.085) 0.114 (0.018) 0.177 0.506 (0.026)

Table 1: A table presenting mean value and standard deviation of recall, precision, area un-
der the receiver-operator curve (AROC), and f-measure for both settings: Logistic
Regression, CBA. K represents the number of centroids used for the histograms.

upward jump of precision in Logistic Regression
with K=200 explains the increase in f-measure
for that method with this single value, denying
the general decreasing trend; this was also the
highest precision value for this experiment.

These values could be also compared to a
baseline of a purely random recommendation.
Since there were 533 complete song reproduc-
tions out of a recommendation matrix with 4
listeners and 1199 songs, the density of 1’s is
533/(1199 ∗ 4) ≈ 0.111 in the ground-truth, and
so generating a uniformly random binary matrix
would theoretically produce 0.111 of precision,
0.5 of recall, and an f-measure of 0.182, inde-
pendently of K. This has also been established
by numerical simulations, not reproduced here to
save space.

Another baseline which might be interesting
to consider is a pure recommendation of 1’s (or
simply stated “just listen to everything”) or a
pure recommendation of 0’s (“don’t listen to any-
thing”). In the first case the theoretical precision
would again be 0.111 for this data, and the theo-
retical recall would be 1.0, with an f-measure of
0.2, whereas the second approach produces re-
call R = 0 and precision and f-measure are not
defined.

Every setting used in the experiment sur-
passed the 50% threshold under the ROC curve.
This is the curve for defining the configuration of

classifiers in terms of true positive against false
positive, with its diagonal meaning random be-
havior. The highest value achieved was for Lo-
gistic Regression operating with 5 centroids.

8. Conclusion

CBA has proved to be a good model for pre-
dicting sparse listening data for small amounts
of MFCC centroids in a Vector Quantized rep-
resentation. It reached its best f-measure value
when MFCC data was represented by only 5 cen-
troids. The hidden β matrix represents the distri-
bution between the centroids and listeners taste,
and the results point to the possibility of repre-
senting these tastes in 5 dimensions, which may
be due to the small number of listeners who par-
ticipated in the experiment. Repeating the exper-
iment with a larger number of listeners, as well
as a more robust method for defining an optimal
K value are considered as future work.

Vector-quantization turned out to be expen-
sive in terms of memory consumption for high
K values, and this should be also tackled in the
future. The cost for running Expectation Maxi-
mization for a high number of centroids is also
very high, and because of this, good results for
low values of K are computationally preferable.
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Figure 3: Comparison between F-measure, recall and precision for CBA and Logistic Regres-
sion for all values of K
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