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Abstract. The paper presents a new OpenMusic library that implements a Ge-

netic Programming method of Symbolic Regression on sets of input data-points

and seeks for a Common Lisp function (S-expression) that can be used either to

create mathematical models that could potentially help to understand the mathe-

matical behavior of the input data or to generate parameters in computer-aided

composition. Stressing that a number of issues must still be addressed to im-

prove the proposed library, the paper presents some of the strategies to do this

and to make Symbolic Regression a practical tool in computer-assisted music

composition and analysis.

1. Introduction

Despite the established distinction between algorithmic music and computer-aided com-

position (CAC) and the related differentiation regarding the role and prevalence of algo-

rithms in the creative processes [12, 29, 5], music composition and analysis with algorith-

mic tools demand, to a greater or lesser extent, the formalization and modeling [38, 7] of

musical materials and processes. While algorithmic and mathematical models of musical

procedures and materials are usually developed by composers, analysts or researchers,

genetic programming (GP) [20, 18, 28] techniques can be explored to achieve optimal

models that could be employed in different analytical and compositional computer-aided

music (CAM) contexts.

Our work addresses the question of automatically generating rough algorithmic

models in CAM environments by using GP techniques such as Symbolic Regression (SR).

Currently, the process is implemented as library for the CAM environment OpenMusic

and as a external application in SBCL. While the project is still in its first stages, the pro-

posed approach provides a new compositional and analytical tool to create mathematical

functions and symbolic expressions that could optimally describe or outline data-sets such

as two or more interrelated musical parameters (pitch, onset, duration, audio features, etc).

Used in iterative processes, those expressions can be employed to generate new values for

the selected parameters or as a starting point to develop more accurate models.

2. Algorithmic models for composition and analysis

In computer-aided, algorithmic and generative music, as well as in other specific musical

practices that directly use computational algorithms in music composition and analysis,
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musical materials, procedures and processes are to be described as data structures and al-

gorithms or computational methods [27, p. 4]. That is to say that they need to be declared

in any computer language in way that both the relevant properties of music materials and

the steps/methods of musical procedures and processes become unambiguously and for-

mally stated so that they can be automatically created, processed, managed or operated

by a computer.

While in the field of music composition this formalization requirement can be

identified already in seminal works on composition with algorithmic tools [19, 44] as

well as in more recent texts of composers dealing with computer-aided music (CAM)

environments [1, 2], in the field of musicology the use of these same tools has lead to new

approaches in music analysis, specially analysis by modelling or formalized analysis [38,

39]. The formalized statement of musical materials and processes results in algorithmic

models that can be used to generate new musical ideas or to reconstitute given music

excerpts (local models) or entire pieces (global models) [38, p. 91].

Given the fact that an algorithmic model does not describe music as a score [42,

p. 1-6], being rather a formal description of the structures, procedures and processes that

can generate music notation or synthesized sounds, it becomes an invaluable tool both in

composition and in musicology. In composition, these tools provide means to prototype

a musical piece or a passage with different input parameters and simulate the possible

results of a formalized compositional process. In computational musicology, on other

hand, algorithmic modelling makes it possible not only to better understand the intrinsic

features of materials, processes and procedures of a given piece or compositional tech-

nique but also offers a glimpse of other possible results that the algorithmic model of the

analyzed piece could yield. Whereas this approach to music analysis has lead to a number

of algorithmic models of different pieces and styles [35, 11, 26, 14], also the modeling

of counterpoint and other compositional techniques [3] used in many algorithmic and

computer-aided compositions since the Illiac Suite (1957) [19] actually apply formalized

analysis in creative processes.

In the context of creating algorithmic models either to compose or to analyze

music, the process of formalizing structures and processes to develop compositional pro-

cedures is not just a particular stylistic approach. Indeed, it becomes, rather, “a necessity

and, even, an imperative” [32, p. 234] to the development of what may be called a “solfège

of models”: the ability to control and “to master both the musical result of a given gen-

erative model and the relationship between the graphic and/or textual representations of

some music software and the music outcome” [31, p. 142]. However, to compose or to

analyze music pieces or excerpts by using algorithmic tools does not imply that all the

compositional procedures and materials are readily reducible to algorithmic models [39,

p. 66]. Indeed, even if the “rule-based nature” [17, p. 108] of some musical ideas, com-

positional techniques and specific music pieces makes them to be specially suitable for

being formally described by algorithmic models, the very process of coding them with

computer languages is often extraneous to the original creative intuition or, in the case of

formalized analysis, to the composer techniques. Further, there are cases in which the be-

havior of given musical parameters (that may be empirically taken from an improvisation

or from a musical piece, for example) do not seem to be generated or easily described by

any known rule or formalized process: the model, if exists, is unknown.

Bearing in mind that algorithmic models for composition and analysis do not nec-

essary reflect the way a composer thought or created a given piece or excerpt [39, p. 65]

it is possible to hypothesize that, even music pieces or excerpts that apparently are not

based on any rule system or methodical procedures, there are models to be found that
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could optimally generate similar outcomes for interrelated variables such as pitch, onset,

etc.

3. Genetic Algorithms, Genetic Programming and computer-aided music

Among many artificial intelligence approaches to this problem, evolutionary computing

provide tools that may be used in the heuristic search for optimal models. Briefly, ge-

netic algorithms (GA) [20, 18] and genetic programming (GP) [28] processes rely on

data-structures and algorithms that are based on evolutionary theories and on the concept

of natural selection. As the genome or digital representation of given individuals (an

algorithm or a data-structure) is transformed by a series of bio-inspired processes such

as mutation and cross-over, individuals are selected to “survive” through a series of suc-

cessive iterations (generations) according to their adaptation to any sort of evolutionary

pressure – usually given by a fitness function. While in GA the individuals are usually any

sort of digitally represented data-structure, in GP they generally are algorithms, symbolic

expressions or computational instructions that are automatically generated and selected

according to its fitness rate in solving a given problem.

The use of GA and GP techniques in computer music is not new. Since the 1990s,

a number of artists and researchers have applied evolutionary computation techniques

in music composition and in computer music research. Many of these works use these

techniques as a means to generate music [23, 41, 6, 24, 10, 33, 36, 25] or as an heuris-

tic tool to solve specific problems – such as finding optimal FM synthesis parameters

[22, 21], to automatically extract descriptors from audio signals [45] or to create mimetic

orchestrations[13] from an input audio target, for instance. However, despite being more

frequently employed in generative algorithmic music and as tools to solve specific prob-

lems in comparison with its use in composition/analysis contexts with CAM environ-

ments, the non-deterministic behavior and the heuristic potential of evolutionary com-

putational techniques makes them appealing to the interactive work-flow that typically

characterizes computer-aided composition and formalized analysis paradigms. Particu-

larly, we envisage potential benefits for the composer and for the musicologist in using

CAM tools not only to model musical materials and procedures but, also, as a heuristic

instrument in the search for unknown models in the form of mathematical functions and

symbolic expressions that may be used in iterative computations.

4. S-expressions and symbolic regression

In visual CAM environments such as OpenMusic (OM) [7, 8] and PWGL[30], both

based on Common Lisp (CL), algorithms are visually represented in the form of patches.

“Boxes” may represent functions, data-types (lists, integers, floating-point numbers,

strings, etc.), methods or classes that are interconnected by “chords” to create more com-

plex computational procedures. Internally, though, as in any Common Lisp code, algo-

rithms are formed by symbolic expressions or s-expressions: trees of lists that combine

atoms (numbers, strings, symbols and some other non parenthesized structures) and lists

that may contain simple data-types or that may call functions and macros that are sequen-

tially evaluated to yield their outputs to the respective parent-lists. Hence, more complex

algorithms and computer applications can be thought as a tree of lists that either contain

data (terminals) or functions.

Since that in Common Lisp algorithms can be written as s-expressions and that s-

expressions themselves are represented as lists and trees, algorithms and iterative compu-

tation processes can be generated automatically by creating well-formed trees, sub-trees
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Figure 1: An OpenMusic patch representing the polynomial 4x2 + 3x− 14. In raw
Common Lisp, the function would be written as the symbolic expres-
sion (- (+ (* 4 (* x x)) (* 3 x)) 14).

and lists from a given set of functions and terminals and specific instructions regarding

each function’s number of arguments and respective data-types. If the tree has one or more

mathematical functions, one of the terminals is an independent variable x and numerical

constants are created within a range of random numbers, the generated s-expression can

be interpreted as a mathematical function f(x) that may be used in iterative processes, as

an algorithm, to generate outputs from given inputs.

While the generation of blind random s-expressions would not be an efficient

method to cover the search space of all possible s-expressions for a given set of func-

-

+ 14

* *

* 4

x x

x 3

Figure 2: A tree representation of the same polynomial

.
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tions, range/type of terminals, and tree depth, GP techniques are far more effective in the

heuristic search for expressions that optimally describe the behavior of the variables. Par-

ticularly, Symbolic Regression (SR) proves to be handy to seeking models (represented as

a s-expressions) that best fulfill the requirement of optimally describe a set of two or more

variables.

SR is a GP method of sequence induction that

involves finding a mathematical expression, in symbolic form, that pro-

vides a good, best, or perfect fit between a given finite sampling of values

of the independent variables and the associated values of the dependent

variables. That is, symbolic regression involves finding a model that fits a

given sample of data. [28, p. 11-12].

SR has been used in a number of different applied fields such as economics, chem-

istry and physics to retrieve mathematical models from experimental data [34, 16, 40, 4].

Unlike other regression analysis methods used as statistical process for estimating rela-

tionships among variables (linear, quadratic, polynomial or logistic regressions, for in-

stance) [15, 37], in symbolic regression there is no assumption about the kind of function

that will model the input data: generally, only the mathematical operators and the type

and range of random constants to be generated are pre-specified.

Furthermore, SR processes not necessarily need to use only usual mathematical

operators as functions: in the same way that it is possible to use sum, subtraction and

trigonometric operations as computational functions to create s-expressions, it is also

possible to use custom defined functions or macros to generate compound computer algo-

rithms written as s-expressions. Indeed, this flexibility is ordinarily used to avoid errors

during the fitness evaluation process: the subtraction operation, for example, is usually

replaced by a custom-defined “protected division” function “%”, that typically yields 1

when the divisor is 0. Similarly, it is also possible to structure symbolic regression pro-

cesses that, instead of dealing with individual numbers and with functions that expect

their arguments to be individuals numbers, work with other data-types such as arrays or

matrices, for example.

5. The OMGP library

The OpenMusic Genetic Programming (OMGP) is a new library for the OpenMusic (OM)

CAM environment that implements Symbolic Regression by means of GP techniques. The

library is based on the original proposition by John Koza [28, p. 237] and, in its current

version (0.1), the library use works in three steps: (1) parametric configuration, (2) search,

and (3) best function retrieve/application.

In the first stage, a series of parameters must be configured to set-up the target

data-points (to be used in the fitness evaluation of each generated s-expression and the SR

algorithm properties). This is done with the functions:

• omgp-functions_and_terminals_vars ,

• omgp-symbolic_regression_vars

• omgp-settargetsarray.

There are also three auxiliary functions that may be used to inspect or set the

parameter values:

• omgp-getvars ,

• omgp-setfvars
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• omgp-mapsetfvars

In practical situations, these functions may be useful, for example, to check spe-

cific values or to create custom configurations.

Figure 3: Function omgp-functions and terminals vars

.

The function omgp-functions_and_terminals_vars is evaluated to in-

dicate the functions repertoire or vocabulary to be used by the SR algorithm and the

respective number of arguments that these functions expect to be given as input. Here

the user also specifies the “terminals” of the s-expression tree, i.e., the kind of random

constants to be generated and the independent variable symbol. Given that the user can

choose between integer and floating-point numbers generators to create the constants, it is

also in this function that one should specify the range of values to be used to the pseudo-

random number generators. Here, it is also possible to define invariant constants (like e
or π) that could potentially be used in the final expression.

Figure 4: Function omgp-symbolic regression vars

.

The function omgp-symbolic_regression_vars sets parameters that are

specific related to the SR algorithm and the genetic programming paradigm. For instance,

one must specify the maximum depth of new individuals s-expressions trees, the maxi-

mum depth of individuals created through crossover, fractions related to the percentage
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of the population that will experience crossover at any point or at the function points of

the tree, the depth of new subtrees, the method of generation of new branches and other

values.

Figure 5: Getting random point of a sinusoidal function to use as target values
using the function omgp-settargetsarray

.

Figure 6: Functions omgp-run symbolic regression and omgp-bestprog,
used to run the SR heuristic search and to retrieve/apply the best fit-
ted s-expression to a series of independent variable values.

The function omgp-settargetsarray is used to store pairs of dependent

and independent variables in an array that will be used to evaluate the fitness of a given

s-expression. The fitness of the expression will be equal to its error to yield the expected

dependent variable values when they are evaluated with the respective independent vari-

able. Clearly, then more the raw fitness (sum of absolute values of the difference between

obtained f(x) value for all target X independent variables) is closer to 0, then more the

generated s-expression is adapted to solve the problem.

The second step in using the OM-gp library is to run the SR algorithm by using

the function omgp-run_symbolic_regression. This functions expects two argu-

ments: the numbers of generations to be evaluated and the size of the initial population.
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In the third step, after running the search function, one can evaluate the func-

tion omgp-bestprog to retrieve the CL tree s-expression best fitted to mathematically

model the target data. This function can then be used as an algorithm –– by being evalu-

ated inside any kind of iterative process such as mapcar or loop macros. The process

can then be used to generate new numerical values for any desired independent variable

or be manually modified to better model specific parameters, for example.

6. Discussion

The OMGP functions described above have been applied to the regression analysis of

data-sets composed by onsets and pitches of monophonic excerpts taken from the musical

literature and from melodies created with the use of mathematical functions. While the

proposed SR process, depending on the parameter settings, is able create functions that

roughly resemble the curves identified in the original content, the first experiments gave

rise to a number of issues that must be addressed before the system can be exhaustively

applied and tested in practical cases of music composition and analysis with CAM tools.

Figure 7: Experimental application of OMGP to generate an s-expression that
models a melody generated by using a trigonometric formula. Although
the resulting s-expression output resembles the input data, the library
must yet be improved to generate more accurate algorithms.

.

A major issue on the current version of OMGP is related to the computation time

of SR processes. Besides the evident impact of population size and of the number of

generations in the computation time, the SR process is also strongly affected by the com-

plexity and depth of trees being created, modified and evaluated as well as by the kind of

fitness function being applied (in our case, absolute mean error). Additionally, since func-

tions in OM are evaluated rather than being compiled [9, p. 6] and considering that long

evaluations hang the environment to further computations until they are accomplished,

it would be better to have an external application running the SR computations and that
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could at same time be controlled and retrieve optimal results to OM through OSC com-

mands, for example.

Additionally, there are a number of strategies that could potentially boost both

the computation time and the accuracy of the results. Specially, we plan to rewrite the

functions used to rune SR process to make them more compact and efficient, using spe-

cific data-structures to represent and manipulate data, as well as declared types for argu-

ments/functions (techniques that previous works have shown to be particularly effective

to make CL applications run faster [43]).

As these issues are related to different characteristics of the system, we are cur-

rently rewriting the whole library so that it works, as well, as an external application in

SBCL. The server will work on input data autonomously and receive commands and re-

trieve data by using network OSC commands and, when necessary, other streams (such

as text files, for example). As the same code that will be used in this external app may

be used inside OM (as a library), the idea is to benchmark the SR system being run both

in OM/LispWorks and in the independent SBCL server, adapting the code to work more

accurately and fast.

7. Conclusion

We have presented a new tool to be used in CAM environments that brings together mod-

ern analysis/composition techniques and powerful heuristic and artificial intelligence in-

struments by applying Symbolic Regression and Genetic Programming to the problem

of formalize algorithmic models of musical processes and procedures. In this paper we

have exposed the main concept and the implementation of a new OM library that, despite

being in its initial stage and demanding further development, proves to be promising to

address the proposed objective. In future works we intend to apply and test this new tool

to specific analytical and compositional projects, potentially expanding the features and

the effectiveness of OMGP and evaluating its performance in different situations.

References

[1] Agon, C., Assayag, G., and Bresson, J., editors (2006a). The OM composer’s book 1,

volume 1 of Musique-sciences. IRCAM-centre Pompidou ; Delatour, Paris : [Samp-

zon].

[2] Agon, C., Assayag, G., and Bresson, J., editors (2006b). The OM composer’s book

2, volume 2 of Musique-sciences. IRCAM-centre Pompidou ; Delatour, Paris : [Sam-

pzon].

[3] Agustı́n-Aquino, O. A., Junod, J., and Mazzola, G. (2015). Computational Counter-

point Worlds: Mathematical Theory, Software, and Experiments. Springer.

[4] Alaa F. Sheta, Sara Elsir M. Ahmed, and Hossam Faris (2015). Evolving stock market

prediction models using multi-gene symbolic regression genetic programming.

[5] Ariza, C. (2005). An open design for computer-aided algorithmic music composition:

athenaCL. Dissertation.com, Boca Raton, Fla.

[6] Biles, J. (1994). GenJam: A Genetic Algorithm for Generating Jazz Solos. pages

131–137.

[7] Bresson, J. (2007). La synthèse sonore en composition musicale assistée par ordina-
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