
  

 Applications of Group Theory on Granular Synthesis 

Renato Fabbri, Adolfo Maia Jr. 

Núcleo Interdisciplinar de Comunicação Sonora – Universidade Estadual de Campinas 
(UNICAMP) 

Caixa Postal 6166 – 13 091-970 – Campinas – SP – Brazil 
{renato,adolfo}@nics.unicamp.br

Abstract. This paper presents an application of the theory of finite groups on 
granular synthesis. We show how to apply finite groups to an ordered set of 
grains in order to get sound streams with cyclical or permutational 
characteristics. We point out that internal content of the grains can also be 
transformed creating linked structures. Using different layers of time 
sequencing we get a rich “polyphony” of  granular sound streams.  In 
addition we presents a computer implementation of our model named FIGGS 
(Finite Groups in Granular Synthesis), a rich and flexible interface developed 
in the Python programming language and SAGE, a software for algebra and 
geometry experimentation. 

1. Introduction 
It is well known that complex symmetry principles have been used in musical 
composition since ancient times. To point just a few examples, there are a number of 
studies of the music of J. S. Bach, the Mozart´s dice game, or the recurrent and 
recursive use of the golden proportion by B. Bartók in the past century. In present days, 
the study of symmetries in an arbitrary number of dimensions makes use of the modern 
Theory of Finite Groups (see [Budden 1972] for an overview and also a musical 
application). The composer I. Xenakis [Xenakis 1991] dedicated a chapter,  in his now, 
classical book Formalized Music, to applications of groups in algorithmic composition. 
On the other hand, due greatly to the exponential growth of digital industry in the 
second half of the twentieth century, electroacoustic music had its major developments, 
and now early tedious procedures can rely on fast computer processing. Roughly 
speaking, composition in electroacoustic music incorporates sound construction and 
temporal organization methods of these sounds. In this way, it is natural to argue 
whether group theory, that is a power tool to explore and represent cyclic and 
symmetric structures, can be applied in electroacoustic music for creating symmetric 
and cyclic organization of sound materials. This work is our contribution in this 
direction. In order to have focus on this approach we are most interested in the well 
known Granular synthesis technique (see [Roads 1996, 2001] for an overview). In this 
way we propose an exploration of symmetries in granular synthesis through  
applications of  finite groups actions on sonic granular structures. 

 In the next section, we present some theoretical preliminaries and some simple 
examples of finite groups and also some comments on  Granular Synthesis. In Section 
3, we show a model, that is, an application of finite groups in granular synthesis. In 
Section 4 we describe shortly some of the computer implementation based on the 

109



  

Python programming language using external packages for numeric manipulations and 
SAGE, a software for algebraic manipulation. A number of models are possible and this 
work is a demonstration of our method´s potential. Nevertheless, as far as we know, this 
is the first time one makes use of Finite Groups in Granular Synthesis. Some sound 
results are available on the Internet and are briefly discussed in Section 5. In Section 6 
we make a  conclusion and list some perspectives of the method we named FIGGS 
(Finite Groups in Granular Synthesis). In last section  we present some bibliography. 

2. Theoretical Preliminaries  

2.1. Group Theory 

Formally, a group G is a set with a binary rule (which we will denote by ‘ • ’ in this 
work) that satisfy these four fundamental properties:  

 1) if g1, g2 ∈ G than g1 • g2 G      (Closure) 

 2) g1 • (g2 • g3) = (g1 • g2) • g3    (Associativity) 

 3) ∃ e ∈ G : g • e = e • g = g      (Identity) 

 4) ∀ g ∈ G,  ∃  g-1  :  g • g-1 = g-1 • g = e  (Inverse Element) 

 

 We denote as (G, •) a group with an operation •. A group is finite if it has a 
finite number of elements, else it is called infinite. A group is called commutative or 
abelian if the commutative property is satisfied for all its elements, that is: 

 ∀ g1, g2  ∈ G, g1 • g2 = g2 • g1 

 

 Some common simple examples: 

a) (Ζ, +) where Z is the set of the integers. 

 The set of the integers form a group with the sum operation. The identity 
element is the number zero and for each integer a ∈ Z, its inverse is -a. (Z,+) is abelian. 

b) (Q+, x), where Q+ is the set of the positive rationals. 

 The identity element is the number 1, and for any q ∈ Q+, q-1 = 1/q, and 1/q ∈ 
Q+. Q+ is abelian. This is the simplest example of a multiplicative group. 

c) (Zp, ⊕), where Zp is the set of the integers modulo p, with p a natural  
number.  

 The identity element is zero, and for any a ∈ Zp its inverse a-1 is given by  

(p – a) mod(p). When p is a prime number Zp becomes a multiplicative group.  

d) (Mn
+, . ), where Mn

+ is the set of invertible quadratic matrices n x n, and . is 
the usual matrix product. The identity element is the Identity Matrix In and the 
inverse element of an element A is the inverse matrix A-1. 

 We are most interested in permutation groups of a number n of objects. Not all 
groups have permutations as elements, but each finite group is isomorphic to a 

110



  

permutation group. So, we can restrict ourselves to permutation froups without loss of 
gnerality. Besides that, permutation groups are a mathematical tool for describing 
symmetries, which are strong factors of artistic thinking. For more on Group Theory 
see, for example, [Budden 1972]. 

2.2. Granular Synthesis 

Granular synthesis  is commonly known as a technique that works by generating a rapid 
succession of tiny sounds, metaphorically referred to as sound grains or yet as 
microsounds. Granular synthesis is mostly used by musicians to compose electronic or 
computer music as it can produce a wide range of different sounds, but it has also been 
used in speech synthesis. Granular synthesis is largely based upon D. Gabor's idea of 
representing a sound using hundreds or thousands of elementary sound particles [Gabor 
1947]. His approach to "elementarity" was inspired by the Uncertainty Principle of 
Quantum Mechanics. He proposed the basis for representing sounds combining 
frequency and time domains information. D. Gabor's point of departure was to 
acknowledge the fact that the ear has a time threshold for discerning sound properties. 
Below this threshold, different sounds are heard as clicks, no matter how different their 
spectra might be. The length and shape of a wave cycle defines frequency and spectrum 
properties, but the ear needs several cycles to discern these properties. D. Gabor 
referred to this minimum sound quantity as an acoustic quantum and estimated that it 
usually falls between 10 and 30 milliseconds. 

 The first formal musical thoughts using D. Gabor's sound representation (time x 
frequency space)  in music were, probably, initiated by composer I. Xenakis. A 
computer-based granular synthesis system did not appear until works of C. Roads 
[Roads 1988] and B. Truax [Truax 1988]. As far as the idea of sonic grains is 
concerned, any synthesizer capable of producing rapid sequences of short sounds may 
be considered as a granular synthesizer. However, it is an important fact that the very 
concept of grain differs in many cases, as for D. Gabor and I. Xenakis. The latter 
describes a grain as the instantaneous measured of a Fourier Partial associated with a 
particular frequency and amplitude, which is, for him, the most elementary 
characteristic of a sound. In this case, a cloud of grains can be thought as a cluster of 
points relatively close to each other in the frequency x amplitude space. And indeed, I. 
Xenakis proposed a density parameter to measure the compactness of a cloud and the 
duration of a grain as an external parameter to control the sound as a whole. For D. 
Gabor, however, duration is an internal parameter of the grain itself, which can have a 
complex content in terms of Fourier partials. D. Gabor borrows the concept of quantum 
of action from Quantum Mechanics to define a quantum of sound. The quantum action 
of sound A is in the order of unity, that is 

                             A = Δω.ΔT = 1                            (1) 

 In early development, C. Roads suggested the following definition: “A grain is a 
signal with an amplitude envelope in the shape of a quasi-Gaussian bell curve” [Roads 
1988]. This is close to D. Gabor's original definition in the sense that it accepts grains 
with complex spectral content. However, the concept of "elementary" (or quantum) is 
not strictly taken into account in C. Roads' definition. The interpretation of  "quasi-
Gaussian bell curve" can be very general. In addition, his concept of grain density is 
actually a measure of the number of grains occurring within a given time interval.  

111



  

C. Roads also suggests that granular synthesis can be classified as a form of additive 
synthesis. We therefore prefer to consider this definition as being for a specific type of 
granular synthesis, which we refer to as Short-Time Additive Synthesis (STAS). A key 
problem in granular synthesis is controlling the evolution of sound grains in time. Most 
granular synthesis systems have used stochastic methods to control evolution of 
hundreds or even thousands of grains. A handful of different methods have been 
proposed. For instance, E. Miranda devised Chaosynth, a granular synthesizer of the 
STAS type that uses cellular automata to manage the spectrum of the sound grains 
[Miranda 2002]. Chaosynth explores the emergent behavior of cellular automata to 
produce coherent grain sequences with highly dynamic spectra. The states of the 
cellular automata defines frequency and amplitude values for an additive synthesis 
engine that produces the granular streams. A critical review and present status of 
Granular synthesis can be found in [Thomson 2004]. 

 Once the sonic grains are discrete entities, it is possible  to think them as objects 
that in which we can impose internal and external symmetries, the last one related to  
temporal organization of grains. 

3. A Theoretical Model 
In this section we presents one of our models. The idea is to show a way to construct an 
application from groups to granular synthesis. 

 Here we are going to consider four permutation groups.  

 a) The Symmetric Group of degree n. the group of  all the permutations on an 
ordered set of n elements. 

 b) The Alternating Group of degree n: the group of even permutations on a set 
of n elements, that is the set of permutations obtainable from an even number of two-
element swaps. 

 c) Dihedral Group: the symmetry group of a n-sided regular polygon for n > 1. 

 d) Cyclic Group: a group which can be generated by a single element and the 
group operation. In our case we use Permutations Cyclic Groups.  

 In this first model we take one of the groups mentioned above. We are, 
currently, taking random elements of these groups, i.e. permutations belonging to 
specific classes, and applying it to the state of our granular parametric set. The above 
model can be applied to any set of grains in order to define a sound stream whose one of 
the main psychoacoustic characteristic is the cyclical sound structure in time.  In 
addition, it is possible to apply group transformations inside the grain itself. This can be 
done, for example, using a set of transformations on granular parameters (frequencies, 
duration, amplitude, etc) and imposing on this set of transformations a group structure. 
This approach leads to construction of granular structures with strong internal 
correlation. 

 

 

 

112



  

4.  Algorithm and Computational Implementation  

4.1. Development Framework 

We have based our implementation on Python, an object-oriented and high-level 
programming language that uses automatic memory management and dynamic typing. 
The language has an open, community-based development. It have been used for a wide 
range of tasks: GUI design, web development, stand-alone programs, among others. It 
has been extensively used by Google and NASA, for example. 

 Python's standard library comes with a bundle of modules that provides basic 
functionalities, but the language is truly extensible for audio manipulation by accessing 
some of the innumerable third party modules such as PySndObj, NumPy and 
Matplotlib. For computational algebra, we can point the excellent SAGE (Software for 
Algebra and Geometry Experimentation), which is written in Python and a modified 
version of Pyrex (SageX) unifying specialized open-source math software and filling in 
functionality gaps. SAGE is a stand-alone software that uses an individual python 
interpreter to run scripts, so we can install python modules to it and extend SAGE's 
functionalities1. For our present implementation, besides standard functionalities in 
SAGE, we used: 

z wxPython: For GUI design. 

z NumPy: For fast numerical array processing. 

z PyAudioLab: for writing NumPy arrays to sound files. 

z Matplotlib: for plotting graphs like waveforms and spectrograms. 

4.2. Algorithms 

For the sake of complementarity, in this section,  we show how we can combine Python 
facilities with the calculational power of SAGE for algebraic structures such as, in our 
case, groups. Within this framework we can create a lookup table for a sinusoidal 
waveform like this: 
import numpy 

cycle = numpy.linspace( 0, 2*numpy.pi, 2**11, endpoint=False ) 

table = numpy.sin( cycle ) 

 Here, we imported the NumPy module and used it's linspace function. That 
function takes as arguments a starting number, an ending number, and a number of 
steps, respectively, and returns an array with “number of steps” elements that specifies 
the number of evenly spaced samples from start to stop. Writing x**y in python is 
evoking the number x raised to power y. The end number is not included in the 
constructed array if endpoint is declared “False”, which is our case since sin(2*pi) is sin(0). 
Our lookup table is the sin function called upon the defined cycle array. We can use this 
table by calculating an increment SI = f * N / SR (where f is the frequency of the signal we 

                                                 
1 There are plans for future versions of SAGE supporting it's use as a normal python module. See  

discussion thread “Is it possible to use SAGE from regular python?” at: 
http://groups.google.com/group/sage-support/ 

113



  

want to use, N is the length of our lookup table, and SR is our sample rate), and iterate 
over the table: 
for i in range( int(duration*SR) ): 

 sig[i] = table[ int(ap) ] 

 ap = (SI + ap)%N 

 The function range calls a list of integers from zero to the input value. If we have 
a desired duration, the number of samples of the signal equals the integer part of the 
duration (seconds) times our sample rate. 

 Invoking groups in SAGE is easy. Here goes some examples for permutation 
groups: 
S = SimmetricGroup(5) 

 This creates a symmetric group of degree 5.  
A = AlternatingGroup(4) 

 This creates an  alternating group of degree 4. 
C = CyclicPermutationGroup(7) 

 As mentioned above, a cyclic group can be generated by a single element g (g2, 
g3...). Its representation as a permutation group is called by the CyclicPermutationGroup(x) 
function (x is the order and the degree of the group). 

 Invoking elements of a group can be done in various ways. We  illustrate here 
two of them on the SAGE command line interpreter: 
sage: S = SymmetricGroup(3) 

sage: list(S) 

[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)] 

sage: list(S)[1]; list(S)[3] 

(2,3) 

(1,2,3) 

sage: S.random_element(); S.random_element() 

(1,3,2) 

(2,3) 

 These tuples are elements of the group S5, they are permutations. In this 
permutation representation we read (2,3) as element in place 2 goes to the place 3 and 
element 3 goes to place 2. We read (1,3,2) as element in place 1 goes to place 3, element 
in place 3 goes to place 2 and element in place 2 goes to place 1. We can apply this 
permutation to an integer: 
sage: g = list(S)[4] 

sage: g 

(1,3,2) 

sage: g(1) 

3 

114



  

 If we have an ordered set (a list) X of parameters and a permutation (a group 
element) g, we can apply that permutation on  that set with these lines: 
for i in range( len(X) ): 

 perm[ g( i +1 ) -1 ] = X[i] 

 This +1 and -1 occur because Python lists have indexes from zero to the length 
of the list  minus one, and permutations in SAGE ranges from one to the length of the 
set in which it acts. This takes us to the last procedure: writing the sound file. 

 We are using NumPy arrays in order to add functionalities to array 
manipulations, to simplify its use and to improve processing speed. There is a module 
named Pyaudiolab that is dedicated to writing NumPy arrays to sound files, and opening 
sound files as a NumPy arrays. It supports all sound file formats supported by libsndfile, 
including WAV, AIFF, Ircam SF, FLAC and RAW. 

 We can write a 16 bit WAV sound file from a NumPy array (here instanced as 
the signal object) using Pyaudiolab like this: 
import pyaudiolab 

fmt = pyaudiolab.formatinfo( 'wav', 'pcm16' )                  (1) 

sndfile = pyaudiolab.sndfile( name , 'write', fmt, nc, sr)     (2) 

sndfile.write_frames( signal, len(signal) )                    (3) 

 (1) Specifying the file format 

 (2) Creating the object sndfile for file writing, specifying its name, its format, its 
number of channels and its sample rate. 

 (3) Calling the write_frames method of the created sndfile object to write 
samples in the signal array for its entire length. 

 As a way of experimenting with this implementation, the user chooses the 
number of grains and inputs parameters for individual grains. Than chooses the  
parameters to be permuted, the groups that acts on each of these parameters and 
commands for the sound to be written. 

 GUI programming issues will not be discussed since they are beyond this work's 
subject. Even so, we will present our interface and use some screenshots to illustrate a 
way to approach the features presented. 

4.3 FIGGS Interface  

We have developed a GUI (Graphical User Interface) in Python for FIGGS (Finite 
Groups in Granular Synthesis). With this we aim to furnish facilities in order to 
represent structural ideas as settings of values allowing the user to concentrate on 
musical creation's symmetric aspects. We intend this GUI interface for the  FIGGS 
model to be friendly and flexible enough in order to allow the user to construct his own 
random distribution. Random distributions for granular synthesis are  the quickest way 
to input parameters, but, of course, the user can also input the parameters values in a 
deterministic way as he/she wishs. 

115



  

 This interface has two tabs: one for granular parametric specifications, and 
another for sound parameters on which chosen groups acts, each with its proper  
controls. 

 
 Figure 1. FIGGS Panel for Grain Specifications 

 

 Each parameter of each grain can be inputed independently or by ease of a 
random distribution. Different distributions are useful here but only the homogeneous 
one is currently implemented in the GUI. Negative separations are understood as 
superposition. This creates an ordered set of grains, which is going to be manipulated by 
group structures. Once this  table is filled in, it can be manipulated by classes of 
permutations. Mathematically speaking, these manipulations are specific permutation 
groups acting on columns of this matrix. A musicican can use this freedom of 
experimentation in order to explore proportions among the physical aspects of the 
grains and their evolution in time.  These proportions are a significant factor of musical 
creation (see, for example, [Xenakis 2001]) and analysis [Shmulevich et al. 2001]. For a 
recent musical example using this approach and FIGGS, please see Section 5. 

  

 

 

 

 

 

 

 

 

 

Figure 2. FIGGS Panel for Groups - Choosing Grain Parameters 

116



  

Figure 2 shows a panel where we can choose independently those parameters that we 
want to permute. That is done by stating the number of times the specified grains are 
going to be played (the number of cycles), the number of grains of each cycle (a joint 
subset of the grains set), and an offset of this subset in the grain set. These are the 
necessary inputs before the sound file can be done, so the user can choose to play the 
grains in the exact sequence defined in the grain panel for an arbitrary number of times. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 shows some group usage. The number boxes besides each group list are the 
number of elements in which the group acts (top), the number of cycles between each 
group action, and an offset of the action set in the grains set. There are numerous ways 
in which a group can act on a parameter set, and there are other groups to be explored as 
well, and more options are going to be available in future developments. In this screen 
shot's version, the action is performed by successive actions of random elements of a 
group (i.e. permutations) on the set. Notice that the number of the permuted elements 
need not to be equal to the number of grains played or the number of grains in the grains 
set. In fact, that is one of the main features of this FIGGS implementation. The user can 
freely move back and forth from the grain panel and the group panel, and command the 
sound file to be written any number of times. This allows making any number  of  
sounds with related behavior and related sounds. 

 Finally, it should be mentioned that is possible to have group actions on spectral 
contents of a set of grains. This will be implemented in a near future. 

 

 

Figure 3. FIGGS Panel for Groups - Specifying Groups 

117



  

5. Resulting Sounds 

One of the main tools used in computer based audio recognition is the representation of 
sounds as a long term statistical distribution of its local spectral features. Such an 
analysis of structures created within FIGGS methods would be about the same if there 
were no group actions involved, for statistical occurrences of the events remains the 
same. Even so, there are strong indicatives that musical cognition often rely on other 
symbolic and analytical level than a physical holistic description can  reveal 
[Aucouturier, Defreville, Pachet 2007]. Musical patterns can be thought as being 
concurrent relations of frequencies and relations of grain onset timings in the metric 
pattern. Melodies are an ordered set of these relations [Shmulevich et al. 2001]. In 
general, FIGGS structures, if  build with densities in the range about 0.1 to 10 grains per 
second, resembles melodies that, due to the set of frequencies choosed, has fixed 
melodic scales. With this respect, the users can find a sound bank with some recent 
patterns examples, at: http://cortex.lems.brown.edu/~renato/sonic-art/nics/FIGGS-
patterns-ex.zip 

 Different granular synthesis techniques can be used in the current FIGGS 
interface. One can, clearly, make synchronous and asynchronous granular streams, as 
well as quasi-synchronous granular synthesis. Irregular onsets of the grains leads to a 
controllable thickening of the sound spectrum [Truax 1988]. Here is a link for 
downloading a sound bank with according examples:  

http://cortex.lems.brown.edu/~renato/sonic-art/nics/FIGGS-clouds-ex.zip 

 It should be pointed that the only amplitude envelope currently implemented in 
the GUI is trapezoidal. 

 A musical experimental piece (~10 min) was created using FIGGS capabilities. 
It can dowloaded at: 

http://cortex.lems.brown.edu/~renato/sonic-art/nics/reflexoes-paradoxais.mp3 

 This piece is about two prose manuscripts by Fernando Pessoa (1888-1935), 
namely Solidão (1947, 1915?) and Reflexões Paradoxais (1916?), and was composed in 
2007 under artistic supervision of J. A. Mannis (Music Department, UNICAMP). 
Passages that makes use of FIGGS are mainly before 02'32” and after 06'52”. 

 The current SAGE/Python code is already available at: 
http://cortex.lems.brown.edu/~renato/sonic-art/nics/FIGGS.zip. A brief README.txt 
instructs how the framework must be set to run the script. 

 An executable version of  FIGGS, as well as the examples above mentioned, 
will be available, by August 2007, at: 

 http://www.nics.unicamp.br/atual/pessoal_renato.htm. 

6. Conclusion and Perspectives 
As mentioned in the introduction section, group theory can be a valuable tool for 
algorithmic composition. Nevertheless, as far as we know, its application in sound 
synthesis was not pursued seriously until now. Our model is a preliminary study in this 
direction. We have used, for the sake of simplicity, the well known finite permutation  
groups which can demonstrate the potential of the model for more complex 

118



  

applications. In addition we can point out some directions and perspectives for future 
work: 

 A) In order to construct musical structures we can use superposition of 
sequences of grains. In other words we can construct layers which can be controlled 
independently (or interdependently) in terms of content and duration of the grains as 
well as their time sequencing. This conception can be envisaged as a tool for granular 
synthesis composition. In addition, new rhythmic aspects can emerge from this kind of 
sound design.  

 B) The use of other groups whose elements are not permutations, such as 
Fundamental Groups, which can be used to describe and impose orbits related to 
topological spaces. 

 C) In order to generate an arbitrary quantity of grains we can make use of 
probabilistic distributions such as Gaussian, Binomial, Bernoulli, among others. Also 
from the parametric point of view, different granular parameters can have linked values. 

 D) Sounds can be generated not only by lookup tables, but by other synthesis 
methods, such as FM synthesis, and have its synthesis parameters controlled by groups 
in order to have streams of related and coherent sound particles. Sound particles can be 
generated as well by using loaded sounds, or slicing it at group controlled intervals.  

 

References 
Xenakis, I., Formalized Music, Bloomington: Indiana University Press (1971);  also, 

Formalized Music, 2d ed., New York: Pendragon Press (1991). 

Budden, F.J.,  The Fascination of groups, CUP,(1972). 

Gabor, D., Acoustical Quanta and the Theory of Hearing, Nature 159 (4044), pp. 591-
594,(1947). 

Roads, C.,  Introduction to Granular Synthesis, Comp. Mus. Jour., 12 (2), pp. 11-13 
(1988). 

Roads,  C., Microsound, MIT Press, Cambridge,MA, (2001). 

Roads, C.,  Computer Music Tutorial, MIT Press, Cambridge, MA (1996). 

Thomson, P., Atoms and errors: towards a history and aesthetics of microsound, 
Organized Sound, 9 (2), pp. 207-218, (2004). 

Miranda, E. R.,  Computer Sound Design: Synthesis Techniques and Programming, 
Oxford: Focal Press (2002). 

Aucouturier, J.-J, Defreville, B., Pachet, F., The bag-of-frame approach to audio 
pattern recognition: A sufficient model for urban soundscapes but not for polyphonic 
music, Journal of the Acoustical Society of America, 2007. 

Shmulevich, I., Yli-Harja, O., Coyle, E. J., Povel, D., Lemström, K., Perceptual Issues 
in Music Pattern Recognition – Complexity of Rhythm and Key Finding", Computers 
and the Humanities, Vol. 35, No. 1, pp. 23-35, February 2001. 

119



  

Python Software Foundation,, “Python Documentation”, http://www.python.org/doc/,  
as acessed in 02/06/2007. 

Stein, W., SAGE – “System for Algebra and Geometry Experimentation”, at  
http://www.sagemath.org/sage/documentation.html, a acessed in 02/05/2007. 

Scipy and Numpy documentation at http://www.scipy.org/Documentation, as acessed in 
02/06/2007. 

Cournapeau, D., “Pyaudiolab homepage”, at http://www.ar.media.kyoto-
u.ac.jp/members/david/softwares/pyaudiolab/, as acessed in 02/06/2007. 

120


