

Octopus Music API: Modelling Musical Performance

¹Leandro Costalonga, Eduardo Miranda, ²Evandro Miletto

¹Interdisciplinary Centre of Computer Music Research - University of Plymouth

206 Smeaton Building,Drake Circus,Plymouth – UK

²Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)

Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brasil

{leandro.costalonga,eduardo.miranda}@plymouth.ac.uk,

miletto@inf.ufrgs.br

Abstract. Music languages are on the cutting edge of all kinds of work in

computer music [Loy and Abbott, 1985]. A satisfactory realization of an

encoded work can be reconstituted through the interpretive practice of trained

performers, but the knowledge that enables human performers to interpret

music notation is extremely difficult to represent in a formal way [Sundberg et

al., 1983]. Unlike previous work, the Octopus Music API aims to facilitate the

programming of music performance system by providing the means to model

not only the music but also the interaction of the performer and the musical

instrument.

1. Introduction

A computer language presents an abstract model of computation that allows one to write

a program without worrying about details that are not relevant to the problem domain of

the program [McCartney, 2002]. Many are the ways in which computers can be

employed in the service of music however the development of programming languages

specifically for musical applications seems to have been concentrated on the areas of

sound synthesis and musical performance [Loy and Abbott, 1985]. These languages are

designed to provide a set of abstractions that makes expressing compositional and signal

processing ideas as easy and direct as possible [McCartney, 2002].

 The Octopus Music API is a Java API design to help in the modelling musical

performance applications. Numerous software packages have been written for

applications in music composition, music analysis, sound synthesis, and sound

manipulation [Pennycook, 1985] but differently from other Java APIs’ for music

software development, the Octopus API has its focus on the modelling of musical

performance elements - mainly the performer and his instrument. Since the limited

space available for this paper, only the most important classes of the API will be

presented. For a full understanding of the capabilities of the API please refer to the

complete documentation at http://cmr.soc.plymouth.ac.uk/software/octopus/index.html.

The sections of this paper are related to the conceptual classification of the structures of

the API. Starting with Musical Data Structures in Section 2, followed by Musical Data

Interpreters and Instrument Classes. A brief conclusion is presented in Section 6.

219

http://cmr.soc.plymouth.ac.uk/software/octopus/index.html

2. Musical Data Structures

Musical Data Structures is a computational formalization of musical concepts that can

be manipulated by the API. This classification applies for classes that represent musical

concepts, such as Note or RhythmPattern.

2.1. Class octopus.Note

Most computer music notations define a musical note as the specification of an acoustic

event. In the traditional music notation a Note specifies a human gesture toward an

instrument [Loy and Abbott, 1985]. For us, the Note is the smallest audible element

handled by the API.

2.2. Class octopus.Chord

A Chord is a set of Notes played together or arpeggiated. The Notes that compose a

Chord are encapsulated in ChordNote objects which are the Notes with its contextual

information, in other words, its role (interval) within the Chord.

3. Rhythmic Classes

3.1. Class octopus.Bar

Notes are sometimes connected by curved lines called slurs to show their grouping into

phrases [Loy and Abbott, 1985]. A Bar, in the context of this work, is simply a rhythmic

phrase. It’s a collection of the smallest rhythmic structure designed in the API. The

Bar.RhythmEvent can be a note or rest with values between 0 and 1 for duration,

dynamic, and accentuation. RhythmEvents can be linked together through the tie

attribute.

3.2. Class octopus.RhythmPattern

In the Octopus Music API the rhythmic line is defined independently from the Melody

or Harmony facilitating the manipulation of the Notes and/or the rhythmic data.

 The RhythmPattern represents a monophonic rhythmic line. Both the Melody

and the Harmony embody RhythmPattern, which is composed of Bars, Marks and

Returning Points. The Bars are inserted sequentially so the input order is relevant.

3.3. Class octopus.Arpeggio

An Arpeggio is a set of RhythmPatterns played simultaneously; it is used to spread the

notes of the Chord along its duration (voicing). Often the Arpeggio information is

omitted on the score and its use varies upon to the technique and expressivity of the

Performer. When a Musician is requested to play a Harmony using a particular

Arpeggio, it will adapt the Arpeggio to the Harmony, repeating or stretching its duration

to match the duration specified for the Chords.

3.4. Class octopus.Melody

Melody is a set of Notes disposed in a sequence and played according to a certain

RhythmPattern.

220

3.5. Class octopus.Harmony

Harmony is a set of Chords played according to a RhythmPattern and Arpeggio. If an

Arpeggio is not assigned for a Chord then all Notes of the Chord will sound

simultaneously and lasts for the respective duration assign for the Chord. The duration

of each Chord is the same as the RhythmEvent associated with it. There is no

information on the Harmony class defining how the Chords should be played (i.e.

chord’s shapes). This knowledge belongs to the Musician.

3.6. Class octopus.Music

 MusicalComponents are the objects that can be placed in time and played as a

single unit known as Music. These components can be either a Melody or Harmony.

4. Musical Data Interpreters

4.1. Class octopus.Musician

The Musician is basically an interpreter of the playable musical structures like: Scale,

Melody, Harmony, Music, RhythmPattern and so on. He knows how to read and play

these structures in the most basic possible level. No instrument restriction is considered

in this computation.

4.2. Class octopus.instument.Performer

 As a subclass of Musician, Performers also interpret musical structure but they

have to adapt these MusicalComponents to the limitations of his Instrument. For

instance, when a Guitarist plays a Harmony he will play it respecting the limitation of

the Guitar he is playing which may sound slightly different when played by the simple

Musician, although a Guitarist is a Musician in a higher level.

4.3. Class octopus.instument.fretted.Guitarist

The Guitarist is a HarmonicPerformer that knows how o play Guitar (actually, any

fretted instrument). The Guitar used by the Guitarist has a direct influence in the way

the Music is played.

 As a HarmonicPerformer, the Guitarist needs to know how to play a Chord in

the Guitar. A Chord can be played in several different ways (ChordShape) and using

several different Arpeggios. Choose the most adequate ChordShape is a responsibility

of the Guitarist. The Guitarist implemented in this API uses a similarity function to take

this decision. Basically it chooses the most similar chord shape related to the previous

one, minimizing the transitions effort [Costalonga et al. 2006].

5. Instrument Classes

5.1. Class octopus.instument.Instrument

 The abstract class Instrument determines the minimum requirements that a new

Instrument must implement to be able to interact with the other classes of API. This

assures the scalability of the API to contemplate new Instruments during its

development.

221

5.2. Class octopus.instument.string.fretted.FrettedInstrument

The FrettedInstrument Class represents the category of Instruments that have a string

running along its fretted neck. The Guitar is an example of a subclass of

FrettedInstrument that models a standard acoustic guitar, with 6 strings, 12 frets and

standard tuning;

6. Final Words

The API is currently been hosted by SourceForge.net under Academic Free License.

Free download and detailed information is available at

http://cmr.soc.plymouth.ac.uk/software/octopus/.

 This paper presented an overview of the Octopus Music API which is a Java API

designed to assist software developers in the construction of software for musical

performance. The API models what we believe to be the 3 elements presented in a

musical performance: a) the performer, b) the instrument, and c) the music.

 The key point to be observed in this API is the inverse approach of common

music performance modelling, this means, instead of encode the performance task in

complex musical notations we decided to endow the Performer with the ability and

freedom to interpreter these structures based on his own knowledge. In the first stage, to

prove the idea, the API focuses on a Guitar Musical Performance. Future work aims to

extend the idea to different musical Instruments.

7. Acknowledgement

This research is sponsored by CAPES, Ministry of Education of Brazil.

References

Costalonga, L., Miranda, E., Matthias, J., Vicari, R. (2006) An Idiomatic Plucked String Player.

In: Proc. of FLAIR’s Special Track on Artificial Intelligence in Music and Art, Melbourne,

Florida, USA.

Loy, G. and Abbott, C. (1985). Programming languages for computer music synthesis,

performance, and composition. ACM Computing Surveys (CSUR), 17(2):235-265.

McCartney, J. (2002). Rethinking the Computer Music Language: SuperCollider. Computer

Music Journal, 26(4):61-68.

Pennycook, B. (1985). Computer-music interfaces: a survey. ACM Computing Surveys

(CSUR), 17(2):267-289.

Sundberg, J., Askenfelt, A., Fryden, L. (1983). Musical performance: A synthesis-by-

ruleapproach. Comput. Music J. 7, 1.

222

http://cmr.soc.plymouth.ac.uk/software/octopus/

