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Abstract. Many works, ranging from biology to optimization techniques, claim 
to have encountered the Red Queen face to face*. Nobody has ever been able 
to capture the Snark, though. In this paper, we describe a novel framework for 
waveform transformation entitled ‘The Hunting of the Snark’ based on the Red 
Queen Principle, which, in Lewis Carroll’s words, states that “it takes all the 
running you can do, to keep in the same place”. As an extension of our 
previous work that consisted of the application of evolutionary techniques to 
waveform synthesis, we generated waveform transformations that resulted 
from the exploration of the soundspace driven by a variation of the 
evolutionary ‘arms race’ paradigm applied to two populations of waveforms, 
denominated Predators and Prey. A mathematical distance between these 
populations gives fitness evaluation and the Predators chase the Prey, who try 
to escape. This spatial dynamics, which was dubbed ‘Snark chase’, gives rise 
to the parallel temporal evolution of two sets of waveforms that have the 
potential to be used in music composition, improvisation and possibly real-
time performance. The genetic sound operators such as crossover, mutation 
and selection are explained in the light of the present implementation and 
preliminary results are shown. 

1. Introduction 
Within the western musical framework, ever since the very dawn of electroacoustic 
music, the focus of a group of composers has been broadened from musical notes to 
musical sounds. Some compositional techniques sprouted from the manipulation of 
these sounds resulting, for example, in transformations of sonic features such as timbre 
or sound quality. Composers such as Trevor Wishart (2000) and Leigh Landy (1993) 
have produced works that can be said to gravitate around the utilization of sound 
transformations and its aesthetical implications. Early techniques included the use of 
analog equipment to store and manipulate the musical material (sounds themselves). An 
immediate consequence is that the results were restricted by the procedural limitations 
of the equipment itself. Enter the digital computer and its great musical potential and 
flexibility in sound manipulation. According to John Chowning (2000), digital 
waveforms can represent virtually any sound imaginable given the correct sequence of 
numbers (digital sound samples). Max Mathews (1963) stated that “there are no 
theoretical limitations to the performance of the computer as a source of musical 

                                                 
* See, for example, Lythgoe 1998 and Paredis 1997. 
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sounds, in contrast to the performance of ordinary instruments”. Therefore, with an 
appropriate representation of all the possible sounds, denominated the soundspace, and 
a proper manipulation of certain properties of the representation and/or exploration of 
certain regions of the soundspace, the process of sound transformation corresponds to 
the generation and manipulation of sounds that evolve in time and therefore can be 
potentially applied to music composition, improvisation and real-time performance. 

 Sound transformations are usually associated with timbral metamorphosis 
[Landy 1993]. Since the pioneering work of Helmholtz (1885), timbre has been closely 
associated with spectral contents. Consequently, most sound transformation techniques 
described in the literature make use of manipulations in the spectral domain by means 
of a sound model that attempts to describe exhaustively the temporal evolution of the 
partials over the course of the sound. These initiatives rely on the analysis/synthesis 
paradigm, which requires the previous analysis of a sound to permit the synthesis step. 
Among the most famous such models are the Phase Vocoder [Flanagan 1966] and 
spectral modeling synthesis (SMS) [Serra 1998], [Smith 1997]. Moorer (1978) has 
extensively described how the phase vocoder can be used in computer music 
applications and Wishart (2000) and Landy (1993) have outlined applications of the 
Phase Vocoder in sound transformations in the perspective of the Composers’ Desktop 
Project (http://www.composersdesktop.com). There are approaches to both models 
attempting to calculate high-level descriptors [Serra 1998], [Amatriain 2002], [Tardieu 
2004] that would allow us to manipulate salient timbral features of sounds 
independently, without affecting the other dimensions [Jensen 1999]. There is no 
consensus on what or how many these features are, however [Caetano 2005, 2007]. The 
approach most closely related to this work is that of Caetano (2007) based on the 
application of bio-inspired algorithms featuring characteristics of self-organization as 
tools to explore the soundspace of digital waveforms and generate sound 
transformations for music composition and improvisation. The method that will be 
presented in this paper is a variation of the evolutionary waveform synthesis (ESSynth) 
approach [Manzolli 2001a,b], which follows the principle that soundspace is virtually 
any digital waveform and that sounds can be generated by means that would promote 
the emergence of novel or even unexpected results. In other words, contrary to the 
analysis/synthesis approach, we propose the exploration of the soundspace of digital 
waveforms using evolutionary computation methods. Evolutionary computation is 
usually associated with creativity [Bentley 1999]. Dawkins (1986) stated that “as the 
search space gets larger, more and more sophisticated searching procedures become 
necessary. Effective searching procedures become, when the search space is sufficiently 
large, indistinguishable from true creativity”. There are computer models that illustrate 
well this argument and constitute an instructive bridge between human creative 
processes and the evolutionary creativity of natural selection [Latham 1992]. In this 
framework, sound transformations are evolving digital waveforms. Caetano et al. 
(2005) have proposed the evolution of a population (set) of waveforms towards a static 
target set. This process ends when (or if) the waveforms reach the target. The focus of 
the current investigation is to co-evolve both sets, named Predators and Prey, allowing 
the evolutionary process to run ideally indefinitely, which is also known in the literature 
as an arms race [Dawkins 1986]. The goal of the Predator set is to chase the Prey 
(minimize their distance to the Prey set), while the Prey must escape the Predators 
(maximize their distance to the Predator set). 
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 The next section briefly overviews the red queen principle (RQP) and its 
connection with co-evolution, attempting to present the motivation of the use of co-
evolution as a paradigm for sound transformation. We then proceed to thoroughly 
explain ‘The Hunting of the Snark’. The algorithm, the genetic parameters and 
operators are properly sketched. Next, we focus on the results, comprising the 
experiment and the discussion of its outcome. Finally, the conclusions and future work 
are presented. 

2. The Red Queen Principle in Co-Evolution 
Evolution can be defined as the accumulation of change in the individuals of a 
population over the generations due to natural selection. Holland (1975) devoted 
himself to the study of adaptive natural systems and, inspired by biological evolution, 
he proposed Genetic Algorithms (GAs) to indicate that adaptation mechanisms can be 
properly implemented in computers. GAs mimic nature in accordance with Darwin’s 
survival of the fittest principle, exchanging information in a structured yet random way. 
GAs codify attributes that fully characterize the elements of a search space, using the 
language of computers. The resulting search space contains the candidate solutions, and 
the evolutionary operators will implement exploration and exploitation of the search 
space aiming at finding global optima. The GA iteratively manipulates populations of 
individuals at a given generation by means of simple genetic operations of selection, 
crossover and mutation. GAs tend to lose variability over the generations [Davis 1991]. 
Co-evolution helps preserve and even generate variability [Palazios 2004]. This can be 
understood as different strategies for catching the prey (or, alternatively, for escaping) 
being developed by individuals over the generations. Co-evolution refers to the 
simultaneous evolution of two or more interacting species. This framework for 
evolution may be conceived so that the species cooperate or compete. The application 
of competitive co-evolution to problem solving has been of interest in the GA 
community because competition, in its most general sense, encourages the generation of 
better competitors [Paredis 1995]. To the best of our knowledge, there have been no 
proposals for the use of co-evolution in waveform transformation. 

2.1. Evolutionary Arms Races and the Red Queen Principle 

There are ways in which mutation and natural selection together can lead, given enough 
time, to a building up of complexity, beauty and efficiency of design. Evolutionary 
‘arms races’ is one of them, under the concept of co-evolution. There are arms races 
between predator and prey, parasites and hosts, even between males and females within 
one species [Dawkins 1986]. Arms races consist of the improvement in one lineage’s 
(say prey animal’s) equipment to survive, as a direct consequence of improvement in 
another (say predator’s) lineage’s evolving equipment [Dawkins 1986]. The principle of 
zero change in success rate, no matter how great the evolutionary progress in 
equipment, has been given the memorable name of the Red Queen Principle (RQP) by 
the biologist Leigh van Valen (1973). In Through the Looking Glass [Carroll 1872] the 
Red Queen seized Alice by the hand and dragged her, faster and faster, on a frenzied 
run through the countryside, but no matter how fast they ran they always stayed in the 
same place. Alice was understandably puzzled, saying, ‘Well in our country you’d 
generally get to somewhere else-if you ran very fast for a long time as we’ve been 
doing.’ ‘A slow sort of country!’ said the Queen. ‘Now, here, you see, it takes all the 
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running you can do, to keep in the same place. If you want to get somewhere else, you 
must run at least twice as fast as that!’ The RQP is directly related to positive feedback 
through symbiotic relations between individuals of the different populations competing, 
it raises the question “Can a natural evolutionary system support continual change?” 

3. The Hunting of the Snark 
The ‘Hunting of the Snark’ method was named after Lewis Carroll’s homonymous 
nonsense poem that describes the voyage of a crew after an imaginary creature that 
cannot be caught. In this paper, ‘The Hunting of the Snark’ has two populations (sets) 
of sounds, Predators and Prey. Each population contains a number of individuals that 
are sounds represented by N samples of a digital waveform at a sampling frequency of 
FS samples per second. The waveform is the genetic code (genotype) that carries all the 
information regarding the sound and can be manipulated. The resultant sound 
(phenotype) is the characteristic that can be perceived. The ‘Hunting of the Snark’ 
algorithm is shown in Figure 1 and the input parameters are summarized in Table 1 and 
were adapted from Palacios-Durazo and Valenzuela-Rendón (2004). Fitness evaluation 
is given by a distance measure (Hausdorff metric) between Predators and Prey as 
follows: we calculate the Euclidean distance between two waveforms regarding them as 
vectors with N dimensions. That is, each sound sample is considered as a vector 
component. As shown in the algorithm in Figure 1, the distance from each of the K 
Predators to all the M Prey is measured, resulting in a K by M matrix of distances. For 
each Predator, fitness is the minimum distance found from all the M Prey. The same is 
done for each Prey. Now that each individual has a distance value attributed, the best 
Predator is the closest to the Prey, and the best Prey is the furthest away. Every 
individual “sees” all other individuals and diversity is not necessarily preserved in terms 
of speciation. This particular spatial dynamics described in our work was dubbed ‘Snark 
chase’. The fitness measure produces a non-linear mapping of the genotype into the 
phenotype and the ‘Snark chase’ dynamics conducts the exploration of the soundspace. 
Thus, we defined the ‘Snark chase’ as “the improvement in the Prey’s evolving 
equipment to escape, as a direct consequence of improvement in the Predator’s evolving 
equipment to chase the Prey.” 

(*Initialize Populations*) 
Load predefined Predator population 
Load predefined Prey population 

(*Main Cycle*) generations 
repeat 

(*Competition Cycle*) Snark chase 
for each p1 ∈ Predators 
for each p2 ∈ Prey 

measure distance between p1 and p2 
end for 
end for 

Fitness of Predators and Prey calculated based on the minimum distance of each individual to all individuals 
in the competing population 

One generation of a GA is applied to Predators 
Crossover, mutation, selection 

One generation of a GA is applied to Prey 
Crossover, mutation, selection 

until termination criteria met 

Figure 1. ‘The Hunting of the Snark’ algorithm. 
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3.1. Genetic Parameters 

The user will adjust the search according to predefined requirements achieved by the 
manipulation of the parameters of the genetic algorithm. It follows closely the original 
ESSynth method [Manzolli 2001a,b], [Caetano 2005]. 
3.1.1. Size of the Population 

The size of the population directly affects the efficiency of the GA [Davis 1991]. A 
small population supplies a small covering of the search space of the problem. A vast 
population generally prevents premature convergences to local solutions. However, 
greater computational resources are necessary [Davis 1991]. In ‘The Hunting of the 
Snark’, the size of the population does not change along the generations. 
3.1.2. Coefficient of Mutation 

It determines the probability of mutation [Holland 1975]. A properly defined coefficient 
of mutation prevents a given individual of the population from stagnating in a particular 
position and also promotes exploration and exploitation of the search space. A very high 
coefficient of mutation causes the search to become essentially random and increases 
the possibility of destroying a good solution [Davis 1991]. In ‘The Hunting of the 
Snark’, the coefficient of mutation ranges from 0 to 1. It is user defined (input argument 
to the algorithm) and does not change along the generations, being responsible for 
limiting the noisy distortion caused by the mutation operator, described in section 4.2.2. 

3.2. Genetic Operators 

It is the genetic operators that transform the population along successive generations, 
being responsible for the emergence of evolution in computers. A standard genetic 
algorithm evolves, in its successive generations, by means of three basic operators, 
crossover, mutation and selection, described as follows. 
3.2.1. Crossover 

It represents the mating between individuals [Holland 1975]. The central idea of 
crossover is the propagation of the characteristics of the individuals in the population by 
means of the exchange of information segments between them, which will give rise to 
new individuals. In ‘The Hunting of the Snark’, crossover operation exchanges 
chromossome segments, i.e. a certain number of samples, between individuals sharing 
the same ‘gene pool’ through a smooth transition. There is no crossbreeding between 
Predators and Prey. There are many different possibilities concerning the selection of 
which individuals will be crossed-over with each other. One must be aware, though, that  

Table 1. Input parameters of ‘The Hunting of the Snark’ 

N Number of samples per 
individual 

FS Sampling rate 

K Number of Predators 

M Number of Prey 

NumInt Number of generations 

coefMut Coefficient of mutation 
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the selection operator for crossover has a great influence in the diversity of the genetic 
pool. We wish to preserve diversity to its maximum to guarantee a good exploration of 
the search space along the generations. However, diversity maintenance must not slow 
down convergence. Many strategies were tried beforehand: randomly selecting both 
individuals, crossing each individual with a randomly chosen individual, crossing the 
best individual with a randomly chosen individual. A suitable strategy was found to be 
crossing each individual with the best individual in each generation to pass along the 
best individual’s gene pool while maintaining diversity. 

 The crossover operation is depicted in Figure 2 and consists in adding a sound 
segment from the best individual to each individual of a given population. The 
operation is somehow similar to granular synthesis and can be interpreted as adding a 
single sonic quantum from the best individual. The segment is obtained as follows: we 
randomly generate the width of the segment, called slice, between N/10 and N/5. Next 
we generate the center of the segment, which must be a value between 1+slice/2 and N-
slice/2 to guarantee that the entire segment always falls between 1 and N. We then 
proceed to create the crossover functions, shown in Figure 3 parts a) and c). The 
crossover function in part c) of Figure 3 is a Hanning window centered at center with 
width equal to slice and zero-padded to size N. The crossover function in part a) of 
Figure 3 is one minus the previous function. Then the function in part a) of Figure 3 is 
applied to one individual of a given population, resulting in the segment seen in Figure 
3 part b), and the crossover function shown in Figure 3 part c) is applied to the best 
individual of the same population, resulting in the segment seen in Figure 3 part d). The 
resultant segments are added producing another individual, denominated Breed, shown 
in part c) of Figure 2. It should be noted that the individual being crossed-over with the 
best individual in that generation is preserved almost entirely, receiving only a narrow 
segment from the best. The crossover functions are generated for each individual of 
both populations. 
3.2.2. Mutation 

It produces random modifications and is responsible for the introduction and 
maintenance of genetic diversity in the population [Holland 1975]. In ‘The Hunting of 
the Snark’, the mutation operator is as follows: N values randomly generated between 
1−coefMut and 1 are used to multiply each of the corresponding elements of a given 
individual (waveform) of the population. This operator introduces a certain noisy 
distortion to the original waveform that is equivalent to a non-linear perturbation in the 
genotype that reflects in phenotype. Notice that the higher the value of coefMut, the 
stronger the perturbation. 

 
Figure 2. Depiction of the crossover operation in time domain. Part a) and b) 
show the waveforms to be crossed-over and part c) shows the result of the 
operation. 
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Figure 3. Crossover functions and the sound segments that result after their 
application. 

3.2.3. Selection 

After mutation all individuals are passed to the next generation. The absence of 
selection for the next generation is a consequence of practical experience. We found 
that all the selection strategies we tried (roulette wheel, random selection and rank) 
caused too much selective pressure and consequently the diversity dropped to zero very 
soon. 

4. Results 
The purpose of this section is not only to present some outcomes of co-evolution in 
terms of sonic results, but also to allow the reader to have a better understanding of how 
it works. For such, we need to highlight that the evolution of the waveforms 
corresponds to a sound transformation procedure, that the Snark chase dynamics is 
responsible for how this transformation is done and that co-evolving the sounds has the 
desired side effect of helping the preservation of diversity, apart from the obvious fact 
that co-evolution in this case means that both populations of waveforms are being 
transformed at the same time. The result of this experiment can be heard at 
ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/SBCM2007/sound_samples.zip. 

 The overall result of the application of the method can be easily inferred as a 
sound transformation procedure that adds partials (spectral complexity) to the sounds 
over the generations mainly because of the crossover operator. In order to try to “show” 
the transformation procedure, the output sound set resulting from a run of the program 
will be shown and discussed. The Predator waveforms were taken from a recording of 
the electric bass and the Prey from piano chord sounds. The resultant waveforms of one 
individual from each population will be presented in generations 1, 2, 5, 10, 50 and 100 
to illustrate the transformations of the waveform along the generations. The 
generational waveform display attempts to draw attention to the variability each 
individual presents over the generations, despite the fact that it preserves some of its 
original information contents. A 3D plot of the short-time Fourier transform (STFT) – 
thereon referred to as dynamic spectrum - of one individual from each of the 
populations in the first and last generations will be compared to exemplify the spectral 
transformations induced by the method. The dynamic spectrum of the original and 
resultant individual highlights the changes to the temporal envelope evolution of the 
partials induced by the method. Finally, we show plots of the distances of the 
individuals along the generations. It might be surprising at first to see the distance value 
being used as a measure of diversity since different individuals can have the same 
distance. On the other hand, one individual can only have a single distance value. 
Therefore, different distance values necessarily mean different individuals. We can even 
go one step further and suggest that small distances imply small differences (and vice-
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versa) because waveforms (individuals) that are only slightly different present a small 
distance (they are correlated vectors). But we must be careful because, although it is 
correct for the genotype (waveforms), we know it is far from necessarily true for the 
phenotypic differences (how they sound). All we need to remember is that differences 
in phase do not affect greatly the sound but alter considerably the shape of the 
waveform. 

4.1. Experiment 

Since the experiment basically consists of a run of the program, we are committed to 
show that the result is a different sound transformation procedure for each population. 
Due to the loss of variability over the generations, the individuals of the same 
population do tend to sound alike after one or two hundred generations. However, we 
know that the initial individuals were different, so we will always have variations of the 
transformation. Therefore, we consider the results satisfactory if we verify that one 
individual from each population actually corresponds to a sound transformation and that 
they are different. The genetic parameters adopted in the experiment were 10 
individuals in both the Predator and Prey populations to supply a satisfactory coverage 
of the search space. The program was run for 200 generations. FS is 44,100 so the 
highest representable frequency is 22,050 Hz. N was set 4096 so each chromosome is a 
wave-format sound segment of approximately 0.0929s. The coefficient of mutation was 
set 0.05 and was obtained empirically because higher values have shown to distort so 
much the waveforms that the results were almost too noisy and masked the 
transformation. Next, we present the waveforms of both Predator 1 in Figure 4 and Prey 
1 in Figure 5 in generations 1, 2, 5, 10, 50 and 100. The top row from left to right shows 
generations 1, 2 and 5 and the bottom row, also from left to right, show generations 10, 
50 and 100. Figure 6 shows 3D plots of the STFT of the original Predator 1 and Prey 1 
and their transformed versions after 200 generations. The top row shows Predator 1, 
from left to right in the first and in the last generation. The bottom row shows Prey 1, 
from left to right in the first and in the last generation. These figures are similar to 
spectrograms in that they show the temporal evolution of the envelope of each partial 
frequency along the course of the sound. Finally, Figure 7 shows plots of the fitness 
values of both populations in all 200 generations. Part a) shows fitness value of all 10 
Predators in all 200 generations, part b) shows fitness value of all 10 Prey in all 200 
generations and part c) 

 
Figure 4. Waveform evolution for Predator 1. From left to right, the top row 
shows the waveform Predator 1 in generations 1, 2 and 5 and the bottom row in 
generations 10, 50 and 100. 
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Figure 5. Waveform evolution for Prey 1. From left to right, the top row shows 
the waveform Prey 1 in generations 1, 2 and 5 and the bottom row in 
generations 10, 50 and 100. 

on top fitness value of the best Predator in each generation and at the bottom fitness 
value of the best Prey for all 200 generations. 

4.2. Discussion 

Figures 4 and 5 show clearly the waveform transformation in the course of the 
generations. For example, from a close examination of Figure 4, it becomes clear how 
in the second generation Predator 1 already possesses one cycle that is different from 
the others. It comes from the best individual in that generation via the crossover 
operator. The Prey 1 waveform shown in Figure 5 is somewhat noisier than that of 
Predator 1, making it more difficult to visually identify the changes it suffers over the 
generations. However, it becomes more evident if we examine the dynamic spectrum 
from Prey 1 in the first and last generations in Figure 6, which illustrates the adding up 
of spectral complexity in the individuals along generations. The temporal envelopes of 
the partials have changed a great deal, which means that not only the waveform itself 
has changed, but also the spectral information. We need to bear in mind that while 
changes to the 

 
Figure 6. Spectro-temporal transformation to Predators and Prey. The top row 
shows the dynamic spectrum for Predator 1 and the bottom row for Prey 1. The 
left column shows both individuals in the first generation and the right in the 
last generation. 
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Figure 7. Distance evolution along generations. Part a) shows the distance 
value for all the Predators, part b) for all the Prey and part c) shows the 
distance value of the best Predator on top and best Prey at the bottom. 

phases of the partials modify the waveform but are not perceived in general, changes to 
the amplitude of the partials also affect the shape of the waveform and are certainly 
perceived as a different sound. Obviously, the same goes for Predator 1 also shown in 
Figure 6, which permits us as well to “see” the result of the distortion caused by the 
mutation operator as the noisy contents in high frequencies that the resultant waveforms 
present and that were not present in the dynamic spectra of the original waveforms. 

 Finally, to analyze Figure 7, it is important to remember that the waveforms are 
kept with the same label along all the generations. This means that the waveform that 
was loaded as Predator 1, for instance, is never relabeled during the process; it only 
suffers the changes made by the crossover and mutation operators. Furthermore, we 
expected the overall distance of Predators to decrease, indicating that they do chase the 
Prey. This can be confirmed by visual inspection of Figure 7 part a), which shows a 
decrease of distance values over the generations that means that the Predators do get 
closer to the Prey by means of the genetic operators alone. The evolution of the distance 
value for the best individual in each generation confirms this general tendency. Figure 7 
also hints at the maintenance of diversity because of the different fitness values that are 
represented by the curves farther apart. For the Predators, from the beginning of the 
generations until at least halfway through to the end there is considerable variability, 
but then around the 150th generation the Predators seem to converge to a single 
oscillating genotype (waveform) that is supposedly the most adapted to chase those 
specific Prey. This oscillating behavior seems to confirm the co-evolutionary predator-
prey dynamics. The Prey do not group together like this over the generations, keeping 
roughly the same diversity. This might reflect a strategy developed by the Prey to keep 
away. Maybe keeping a more diverse gene pool helps the Prey avoid be reached by the 
Predators. Although it is too soon to jump to conclusions like this, we would like to be 
able to find out whether a specific genotype for the Prey induces the Predators to 
converge to a certain specific region of the soundspace similarly to what the static target 
sounds in ESSynth cause (Caetano et al. 2005). This would mean we could “direct” the 
transformations of the Predators towards some desired general result with the right 
population of Prey. 

5. Conclusions 
We have described ‘The Hunting of the Snark’, a waveform transformation method that 
has co-evolution as paradigm. It can be seen as a variation of the evolutionary sound 
synthesis method (ESSynth), which applies a GA to a population of waveforms that are 
driven towards another static population as target. Here, the target waveforms move 
away motivated by a variation of a model of co-evolution. We denominated the two 
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populations of waveforms Predators and Prey and the sound transformation method 
consists of the Predators chasing the Prey and the Prey trying to run away from the 
Predators. Both populations are being transformed in parallel in what we have dubbed 
Snark chase.  Ideally, the Snark chase dynamics means that, as long as we have 
variability, the process goes on. Put in a different way, the Predators will never reach 
the Prey if they keep successfully running away, but they will keep chasing them 
anyway. This supposedly means that the sound transformation process is virtually 
endless because the target is moving away. However, due to the nature of the crossover 
operator, its exhaustive application over hundreds of generations forces homogeneity in 
the genotype (waveforms), which necessarily means that there will be a loss of diversity 
along the way. This loss of diversity corresponds to the convergence of the algorithm. 
We expect, though, the Predators to try and catch the Prey and the Prey to run away as 
fast as they can. This fact should be reflected as a decrease in distance values for 
Predators. We have indeed found a decrease in distance for the Predators over the 
generations that can be interpreted as the Predator population approaching the Prey. 
Also, upon convergence, there is indication of oscillatory behavior, characteristic of co-
evolution. The Prey are being transformed just like the Predators. The very same 
crossover, mutation and selection operators are applied to both populations and the 
waveforms of one individual from each population in some predefined generations we 
have shown confirm that both Predators and Prey are being transformed, endorsing the 
use of co-evolution as paradigm for evolutionary sound transformation. 

 Future work might include testing different mutation operators; comparing the 
results of evolutionary and co-evolutionary waveform transformation, verifying if a 
certain group of Prey drives the Predators towards a specific region of the soundspace 
and even experimenting with multi objectives, so that the Predators would not simply 
chase the Prey, corresponding to different kinds of competition. 
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