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Abstract. In order to represent the variety of sounds a musical instrument may 
produce, it is necessary to find a model that can cope with sound features 
independent from its scale. In this work, several models of timbre 
characterization were applied to sample notes in several intensity levels 
across the whole extension of a clarinet. These models were based on 
amplitude and frequency time-varying curves of partials, which were 
measured by Discrete Fourier Transform. Principal Component Analysis 
techniques and Genetic Algorithms were used to define spectral sub-spaces 
capable of representing all tested sounds and of grouping them. The K-means 
clustering algorithm was used to infer timbre classes. Self-Organizing Maps 
lead to results similar to those obtained by PCA representation and K-means 
algorithms. 

Resumo. Para se representar a variedade de sons que um instrumento musical 
é capaz de produzir, é necessário se utilizar modelos que podem lidar com um 
conjunto de parâmetros, independentemente de sua dimensão ou escala. Neste 
trabalho, vários modelos para caracterização do timbre foram aplicados a 
amostras de notas executadas em várias intensidades, cobrindo toda a 
extensão do clarinete. Estes modelos se basearam nas curvas de amplitude e 
freqüência dos parciais, obtidos através da transformada discreta de Fourier. 
Análise por Componentes Principais e Algoritmos Genéticos foram utilizados 
para se definir um subespaço espectral capaz de representar e agrupar estes 
sons. O algoritmos de agrupamento das K-médias foi utilizado para se 
determinar classes de timbre neste subespaço. Mapas Auto organizáveis 
produziram resultados similares aos produzidos pela PCA e K-médias. 

1. Introduction 
Representation of a musical instrument involves the estimation of the physical 
parameters that contribute to the perception of pitches, intensity levels and timbres of all 
sounds the instrument is capable of producing. Of these attributes, timbre poses the 
greatest challenges to the measurement and specification of the parameters involved in 
its perception, due to its inherently multidimensional nature. Timbre is perceived by 
means of the interaction of a variety of static and dynamic properties of sound grouped 
into a complex set of auditory attributes. Due to the multidimensionality of this 
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attribute, the identification of the contribution of each one of these competitive factors 
has been the main subject of psychoacoustics research on timbre perception. 

 In one of the most classic studies on musical timbre, (Grey, 1975) measured 
subjective judgment of similarity between pairs of timbres from 16 different musical 
instruments, submitted them to multidimensional scaling (MDS) and built a three-
dimensional timbre space, in which multidimensional "timbre values" of different 
instruments were positioned according to their similarity/dissimilarity. Other than 
mapping geometrically the concept of acoustic similarity, that study also showed the 
capability of the method for providing a psychological quantification of a relatively 
complex structure upon quite simple data – similarity/dissimilarity responses between 
pairs of distinct timbres. 

 More recent studies were able to relate measurable physical parameters with the 
dimensions shared by the timbre represented in these spaces, combining quantitative 
models of perceptive relationships with psychophysical explanations of the identified 
parameters (Hajda, Kendall et al., 1997; Misdariis, Smith et al., 1998). The possibility 
of establishing correlations between purely perceptive factors related to timbre and 
acoustic measurements extracted directly from sound, directed research on musical 
timbre towards more quantitative approaches. A historical review of the development of 
research on musical timbre is found in (Mcadams, Winsberg et al., 1995). 

 A technique commonly used in research on musical timbre nowadays is 
Principal Component Analysis (PCA). Recent works applying PCA to time-varying 
amplitude and frequency curves of harmonic components have produced similar results 
with similar sets of sounds (Cosi, De Poli et al., 1994; Sandell e Martens, 1995; 
Charbonneau, Hourdin et al., 1997; De Poli e Prandoni, 1997; Rochebois e 
Charbonneau, 1997; Beauchamp e Horner, 1998). Multiple Wavetable synthesis (MWS) 
and Genetic Algorithms have also been commonly used to build orthogonal bases 
similar to the PCA. However, MWS have the advantage to allow a better understanding 
of timbre dynamics and its relation to the acoustics of the instrument (Horner, 
Beauchamp et al., 1993; Horner, 1995a; b; Horner e Ngai-Man, 1996).  

The above mentioned studies on timbre analysis have approached comparisons among 
different musical instruments outside any musical context. This study investigates 
methods for representing the variety of sonorities produced by one single musical 
instrument, searching for models that are able to describe fine timbre attributes that are 
found in a single instrument timbre class. 

1.1. Timbre modeling procedure 

There are several ways of producing sound features for timbre modeling. (Tzanetakis, 
2005) suggests a Music Information Retrieval (MIR) pipeline composed by the 
following steps: data acquisition, parameter extraction, feature estimation and 
information processing (classification, synthesis, and so on). The following sections 
will describe methods for the construction of a MIR pipeline for fine timbre 
characterization. 



  

2. Timbre Set Specification 
For the data acquisition step, it is important to have a data set properly defined. Since 
the purpose of this study is to show ways of representing the timbre of a musical 
instrument upon spectral parameters extracted from samples of sounds performed on 
that instrument, an adequate set of sounds for such a representation should include as 
many as possible different timbres, performed along the instrument entire pitch range. 
The timbre set used in this study was limited to the sound palette commonly produced 
on musical instruments in traditional classical western music performance, excluding 
sonorities produced on the instrument on the context of other musical traditions, as well 
as those regularly used in contemporary music known as “extended techniques” and 
only the sustained part of relatively long sounds was considered, excluding attack, 
decay and transitions between consecutive notes. 

 Although timbre may vary independently from intensity and duration, its 
dependence on intensity is evident. This high level of correlation facilitates the 
sampling of different timbre “values” of the same note upon specification of intensity 
levels. Thus, different timbres were sampled for each note in the following intensity 
levels: pianissimo (pp), piano (p), mezzo-piano (mp), mezzo-forte (mf), forte (f) and 
fortissimo (ff).  

3. Spectral Bases for Timbre Characterization 

3.1. Spectral Parameters Estimation 

The amplitude curves of the harmonic components were used as the initial parameters 
of the model, and were extracted using the short-time Fourier transform, according to 
McAulay and Quatieri’s method (Mcaulay e Quatieri, 1986; Serra, 1997). In order to 
reduce the complexity of the data amplitude curves were smoothed by a low pass filter 
with cut-off frequency of 10 Hz. 

3.2. Features measurement by Principal Component Analysis   

The parameter space defined by the spectral analysis has as many dimensions as the 
number of partials extracted. The high correlation of these spectral parameters, 
presented in both the frequency and time domains, which is a common characteristic of 
spectral distribution of sounds of musical instruments, allowed an efficient data 
reduction using Principal Component Analysis (PCA) (Johnson e Wichern, 1998). 
Applied to a set of multidimensional variables, PCA calculates an orthogonal basis 
determined by the directions of maximum variance of the analyzed data. The 
projections of the original data on this basis, denominated principal components (PCs), 
follow trajectories that accumulate the maximum variance of the data in a decreasing 
order. This allows an approximate representation of the data, using only a reduced 
number of dimensions.  

3.3. Features measurement by Multiple Wavetable Synthesis and Genetic 
Algorithms 

Musical sounds can be efficiently synthesized using an automatic genetic algorithm 
(GA) that decomposes the sounds into a group of wavetables (usually 3-5). The 
decomposition process consists of finding the optimal group of tables that reconstructs a 



  

signal with minimum distortion. An approximation of the sound can be then constructed 
by Multiple Wavetable Synthesis (MWS) as a linear combination of these tables 
(Horner, Beauchamp et al., 1993). In this work, GA was used for the feature estimation 
procedure using wavetable components that were sampled from spectral components of 
the input data itself. This was possible because it was assumed that the recorded 
database comprises the timbre universe of the clarinet. In this novel approach, the 
population of the GA is constructed from real measured spectra, instead of being 
randomly generated, which makes it specially useful for analysis purposes. See (De 
Paula, Loureiro et al., 2004) for a detailed description of the procedure. 

 Figure 1 shows the results obtained by the use of PCA and GA for feature 
estimation of the Timbre space. These bases were calculated using a concatenated group 
of four notes (16 sounds): B3, C4, C#4 and D4, each one played in four intensity levels: 
pianissimo, piano, forte and fortissimo. 

 
Figure 1: Comparison between the 5-dimensional PCA and GA base. The bases  
were calculated for the concatenated group of 4 notes (16 sounds): B3 (220 Hz), 

C4 (233 Hz), C#4 (247 Hz) and D4 (262 Hz). 

4 The feature space of the clarinet timbre 

The reduction in dimensionality resulted from PCA and GA made it possible the 
representation of the spectral distribution on low dimensional spaces. Figure 2 shows 
three-dimensional trajectories of the four notes of  Figure 1.  The first dimension of the 
PCA has a high correlation with the intensity level of the sounds and the PC value 
increases as the sound intensity increases. Although there is no visible correlation for 
the first component of the GA space, there is a clear intensity grouping and organization 
along the second and third dimensions of the GA. Since the spectral matching is an 
optimization process based on randomly generated populations, there is no real meaning 
in the order of the GA dimensions, and the amount of data each one explains is not 
ordered in the same way as the PCA. It can also be observed that the range of variation 
decreases as the dimension number increases in the PCA space, showing a clear 
hierarchy of dimensions. The same does not happen in the GA space, where all 
dimensions keep similar ranges of variation. 

 



  

 
Figure 2: Three-dimensional trajectories of the four notes B3 (220 Hz), C4 (233 
Hz), C#4 (247 Hz) and D4 (262 Hz) on PCA (left) and GA (right) spaces. 

5. Timbre Classification 

5.1. K-means Cluster Analysis 

An attempt to investigate the timbre distribution along the entire instrument was made 
with Cluster Analysis, using the K-means algorithm (Kaufman e Rousseeuw, 1989). In 
the present analysis, the variance of a cluster was calculated using the Squared 
Euclidian Distance, although other types of distance were tested giving similar results. 
To avoid local minima, the K-means was run 40 times and the best solution was chosen. 
Comparison of timbre parameters among notes of different pitch becomes more 
complex, as timbre may vary significantly as a function of the note played, depending 
on the instrument. Clarinet sounds, as used in this study, present irregular variation of 
timbre from note to note, which can be very accentuated, depending on the region of the 
instrument, like the abrupt timbre change between the low and mid registers, a well 
known characteristic of the clarinet. At first, a cluster analysis was performed using the 
19 notes (76 sounds) from the low register of the clarinet, from D3 (147 Hz) through 
Ab4 (415 Hz). Nine clusters provided the best correlation between auditory tests and the 
classification obtained for this set of sounds. A new clustering analysis was then 
performed using the 19 notes (76 sounds) from the low register of the clarinet. Nine 
clusters provided the best correlation between auditory tests and the obtained 
classification for this set of sounds (Loureiro, De Paula et al., 2004). Very few of these 
sounds had their principal component coordinates split into different clusters and, when 
this happened, no more than 2 clusters were involved and the cluster assigned to the 
central part of the sound was always the cluster where the majority of points lied. 

 Figure 3 shows the 11 lower notes of the clarinet (from D3 through C4), 
represented by the location of its central frame on the low register timbre space. The 
figure shows a large group of sounds clustered together close to the origin of the space 
(left), which includes the pp or mp version (or both) of every note of this set (D3 to C4), 



  

except for the Eb3. Sounds mf and ff are more spread along all three dimensions, 
showing that intensity level differentiation spread the sounds more strongly than pitch 
differentiation.  This can be also observed in Figure 4, which orders all 76 sounds of the 
low register of the clarinet by pitch and shows the cluster to which each one was 
assigned. Each sound is represented by the location of its central frame on the low 
register timbre space. This figure highlights the correlation of the cluster to intensity 
level and shows that intensity level variation spreads the sounds more than pitch 
variation. Auditory tests showed strong coupling of perceived brightness to clusters 
assignment.Due to the known relationship of spectral centroid to the perception of 
brightness, cluster labels were ordered according to the mean of the spectral centroid of 
the group of sounds assigned to it. Note that the first 3 clusters group almost every pp 
and mp sounds of the whole set. Moreover, notes of higher pitch in mf and ff were also 
assigned to these clusters. While higher pitched notes were grouped more tightly into 
these clusters, the four last clusters contain only mf and ff notes of the lower octave, It 
can be seen that notes of lower pitch tend to have a wider variation in timbre and that 
timbre becomes more stable and concentrated in lower clusters as the pitch increases. 
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Figure 3: Three-dimensional trajectories of the four sounds of  each of the 11 
lowest notes of the clarinet, from D3 through C4, in  the spectral space defined 

by the entire low register  (points not labeled on the left of the figure 
correspond to notes:  D3 pp, E3 pp, F3 pp, F3 mp, F#3 pp, F#3 mp, G3 pp, Ab3 

pp, A3 pp, Bb3 pp, Bb3 mp, Bb3 mf , B3 pp, B3 mp, C4 pp and C4 mp). 

A new clustering analysis was then performed using the 33 notes (132 sounds) from the 
first and second register of the clarinet. Twelve clusters were found to be more adequate 
for this sound set. Figure 5 shows a similar plot to Figure 4, including now the 14 notes 
of the second register, A4 through Bb5. With the exception of one mf and four ff sounds 
(Bb mf, Bb4 ff, C# ff, B4 ff and Bb5 ff), all sounds of the second register lied in the five 
first clusters, together with pp and mp notes from the lowest register. This shows the 
tendency of higher notes to be clustered tighter together, reinforcing the correlation of 



  

the classification to the variation of the intensity level, as well as the diminishing of 
timbre variation as pitch increases. 
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Figure 4: Cluster Label of the 19 notes of the low register of the clarinet. Notes 
are ordered by pitch and cluster labels by the mean of the spectral centroids. 
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Figure 5: Cluster Label of the 4 four sounds of each of the 33 notes of the first 
two registers of the clarinet. Notes are ordered by pitch and cluster labels by 

the mean of the spectral centroids. 

5.2. Self-Organizing Maps 

Self-Organizing Maps are algorithms formalized by Kohonen for non supervised neural 
nets, capable of mapping input data of large dimensions into lower dimensional spaces, 
preserving the essential topological relationships of the original data (Kohonen, 1995). 



  

Because it is not based on a priori suppositions about the characteristics of the analyzed 
data, SOM is a powerful tool to analyze complex and non-linear data, such as musical 
sounds. Leman (Leman, 1994) proposed a comparison between timbre mapping 
obtained by SOM and those spaces built by MDS starting from psychological 
measurements, as a basic reference for cognitive research in music. Toiviainen 
(Toiviainen, Kaipainen et al., 1995) compared the efficiency of musical timbre 
representations in spaces built by topological distances calculated by SOM to subjective 
measurements of similarity. The results of that work proved a high correlation degree 
between the two domains, suggesting an adaptation of the model of Kohonen to project 
multidimensional perceptive complexes in this kind of representation. De Poli (De Poli 
e Prandoni, 1997), Cosi and colleagues (Cosi, De Poli et al., 1994) developed studies on 
classification of musical timbre using SOM. Faiten (Faiten e Gunzel, 1994) obtained 
timbre specialization by processing pre-processed spectral parameters with SOM. This 
paper used a Matlab Toolbox from Versanto and colleagues (Versanto, Himberg et al., 
2000). 

 An hexagonal SOM of size 16-by-9 was used to map the 76 sounds (19 notes) 
from the low register of the clarinet. Figure 6 shows the relation of this mapping to 
sound intensity levels. As in the classification with k-means, ff and mf sounds tend to be 
grouped together. Moreover, pp and mp sounds were also tighter clustered than mf and 
ff sounds, as already observed on the spectral timbre space of Figure 3. This can be 
verified by the distance metrics distribution of the SOM shown on the graph on the right 
side of Figure 6, in which distances between hexagons represent distances between map 
cells. 
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Figure 5: SOM mapping of intensity levels (left) of the 76 sounds (19 notes) of 
the low register of the clarinet and the distribution of the distance between map 

cells (right). Closer (larger) cells mean closer matching units. 

Although SOM mapping is projected onto two dimensions, some consistency between 
both representations was identified. Like the K-means, SOM was able to map together 
every frame of a single sound into one or at most two cells. Figure 7(a) shows the 
mapping of the sounds of two contiguous notes of the lower octave of the clarinet, F3 
and F#3. The labels indicate also the percentage of hits of that sound into the respective 
cell. Note also that the sounds of these notes were all packed together at the bottom left 
corner of the map. A similar clustering could be also observed in the spectral space 



  

representation. This fact suggests that the sounds of these notes do not vary 
considerably with intensity level. Figure 7(b) shows the hits of two other contiguous 
notes, Ab3 and A3. Despite being closer in pitch, they were widely spread in the map, a 
fact that can also be confirmed by their trajectories in Figure 3. Comparing Figures 4 
and 7(b), it is possible to note the high correlation between the K-means analysis and 
the Kohonen map. In both classifications, the Ab3 was assigned to higher order clusters 
(top cells in the map) and its sounds were tighter together, while the A3 was wider 
spread over clusters and cells. 

Figure 6(c) shows the trajectories of six notes of the lower octave of the instrument, 
including the notes plotted in figures 7(a) and 7(b): D3, Eb3, F3, F#3 and Ab3. Despite 
being closer in pitch, they were mapped onto two distinct groups on opposite sides, D3, 
Eb3 and Ab3 on the upper left corner and F3, F#3 and A3 on the lower right corner. 
Comparing Figures 4 and 7(c) we observe that notes of the upper left corner were 
assigned to the same clusters by the K-means as were also the notes mapped on the 
lower right corner. They were also spread into opposite sides on the spectral timbre 
space (Figure 3). Moreover, in both classifications Ab3 sounds were positioned tightly 
together, while A3 sounds were widely spread over clusters and cells, corroborating the 
high correlation between the K-means and the Kohonen map. 
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Figure 6: SOM mapping of : (a) notes F3 and F#3; (b) notes A3 and Ab3; (c) 
trajectories of notes D3, Eb3, F3, F#3 and Ab3. 

6. Conclusion 
PCA and GA were presented as adequate models for a lower dimension timbre space 
definition. Auditory tests of discrimination with resynthesized sounds with normalized 
pitch showed the effectiveness of the representation model presented in this paper, 
showing a clear relation between the perceived timbre and the cluster label to which the 
notes were assigned. The construction of spectral sub-spaces involving all possible 
sounds produced by the instrument made it possible a compact representation of the 
whole timbre palette of the instrument. Both K-means and Self-Organized Maps 



  

provided a descriptive comparison of the dynamic variation of timbre. These 
representations and clustering techniques showed a strong matching, as they are 
mapping data from the same spectral timbre space. Summarizing, it could be clearly 
verified across all the results presented in this study that: (i) timbre classes tend to be 
divided as a function of spectral brightness, which is known to be correlated to intensity 
level in wind instruments; (ii) the lowest octave of the clarinet exhibit in general much 
more richness of timbre differentiation than higher pitched notes; (iii) the highest octave 
of the mid register (from C5 up), exhibit less spectral brightness and less timbre 
differentiation.  The results of this study applied to wider dynamic timbre variation will 
facilitate the investigation of the use of intentional timbre differentiation by the 
performer to convey musical expressiveness. Other perspectives for this project is to 
extend the investigation to shorter sounds, like staccati and pizzicati, as well as attack, 
decay and transition between notes, for which auditory models seems to be an adequate 
analysis tool. 
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