Automatic Transcription of Monophonic Audio Signals

Narciso Trevilatto Junior Jayme Garcia Arnal Barbedo Amauri Lopes

Context

- Potentially Usefull for Musicians and other Professionals of Music
- Good Results for Monophonic Signals
- Treating Complex Signals is Still a Problem
- This Work: First Step of More Sophisticated Techniques

Fundamental Frequency Estimation

Autocorrelation Method

$$f_0 = F_s / n_d$$

- f0 Tracking
 - Window size of 50 ms
 - Hop size of 25 ms
 - Detects frequencies above 40 Hz

fo Extraction

Time Expansion to Eliminate HarmonicsPeak Selection

Frequency and Duration Estimation

- MIDI number extraction
- Rounding of MIDI numbers
- Determination of temporal bounds of the notes

Results

Sound Source	Number of Notes	Correct Detect	False Detect	Index /
Strings	507	484	45	0.87
Wind	1805	1712	93	0.90
Speech	492	463	69	0.80
Total	2804	2659	224	0.87

I = (*CorrectNotes* – *FalseNotes*) / *TotalNotes*

Conclusions and Future Work

- Good results for simple audio excerpts
- Do not take into account effects like vibrato and glissando
- Future improvements
 - Use of improved techniques for harmonic rejection
 - Incorporation of logics based on musical theory
 - Extension to complex signals