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Abstract. This computational model of harmonic chord recognition 

investigates the perception of harmonic chords by peripheral auditory 

processes and auditory grouping. The frequency selectivity of the auditory 

system is modeled using a bank of overlapping band-pass filters and a model 

of inner hair cell dynamics. The periodicity in each frequency channel is 

determined by autocorrelation. These periodicities are grouped according to 

pitch class. By computing the intervals between the high priority pitch classes, 

the model achieves considerable success in recognizing major, minor, 

dominant seventh, diminished and augmented chords. Its performance is 

evaluated on chords from instrument samples as well as from an ensemble 

recording. 

1. Introduction 

In the auditory system, harmonics belonging to the same fundamental frequency tend to 

fuse and be heard as a single sound with a pitch corresponding to that fundamental 

frequency.  

 Two harmonic notes form the interval of an octave when their fundamental 

frequencies are in the ratio 2:1. Western music theory assumes octave equivalence: 

notes one or more octaves apart have the same harmonic function [Parncutt 1989]. 

These notes belong to the same pitch class. In Western music theory the harmonic triad 

is built out of three pitch classes. Both major and minor triads contain the perfect fifth 

interval. The diminished triad contains the diminished fifth interval (two minor 3rd 

intervals) and the augmented triad contains the augmented fifth (two major 3rd 

intervals). Along with perceiving each individual pitch in the triad we perceive the 

quality of the triad as a whole. Bregman [Bregman 1990] mentions that music may be 

thought of in terms of a horizontal and a vertical dimension. The horizontal dimension 

is time and the vertical dimension is pitch relations or harmonies. “The vertical 

organisation gives us not only the experience of chords but also other emergent qualities 

of simultaneous sounds, e.g. timbre, consonance and dissonance [Bregman 1990].” A 

chord can be thought of as a global entity that has its own emergent properties; the 

chord as a whole becomes the acoustic object we hear. 

2. The auditory filters 

The spectral analysis carried out by the basilar membrane is modeled using a parallel 

bank of 160 overlapping gammatone filters, each tuned to a different frequency 

[Patterson et al 1992]. A Matlab implementation is supplied by Malcolm Slaney [Slaney 

1993]. The time domain impulse response of the gammatone filter is: 



  

 gt(t) = a t(n-1) exp(-2πbt)cos(2πft+θ); (t>0) 

The bandwidth of the filter is determined by b, and n is the order of the filter and so 

controls the slope of the skirts. The bandwidth of each filter is described by the 

Equivalent Rectangular Bandwidth (ERB). This is defined as [Glasberg and Moore 

1990]: 

 ERB = 24.7(4.37f/1000 + 1) 

With n = 4 then the filter bandwidth, b = 1.019*ERB in the current implementation 

[Patterson et al 1992, Slaney 1993]. The ERB increases with increasing channel centre 

frequency. 

3. The hair cell model 

Meddis [Meddis 1985, 1987] described a computational model of mechanical to neural 

transduction at the hair cell-auditory-nerve fibre synapse. The output excitation function 

in response to an acoustic stimulus is a stream of spike events precisely located in time. 

The model describes the production, movement and dissipation of transmitter substance 

in the region of the hair cell-auditory-nerve fibre synapse. Meddis [Meddis et al 1990] 

published a computer program of the hair cell model. This program has been 

implemented in Matlab by Malcolm Slaney [Slaney 1993]. The output of each filter is 

passed to the inner hair cell model. The model implements one hair cell per frequency 

channel. The model assumes that the probability of a spike occurrence is linearly related 

to the amount of transmitter substance in the synaptic cleft between the inner hair cell 

and its corresponding auditory nerve.  

 The following equations are computed at each time interval dt and define the 

operation of the model. The hair cell contains a quantity of free transmitter, q(t). A 

fraction of this transmitter is released between time t and time t+dt across the membrane 

into the synaptic cleft. 

 Fraction of transmitter released = k(t)q(t)dt 

The permeability of the membrane, k(t), fluctuates as a function of the instantaneous 

amplitude of the acoustic stimulus, s(t). 

k(t) = g[s(t) + A]/(s(t)+A+B), with   [s(t)+A]>0 

k(t) = 0, for [s(t)+A]<=0, A and B are constants B>A. 

When s(t) = 0 (no acoustic stimulation), spontaneous activity in the auditory nerve is 

allowed for by gA/(A+B), the transmitter leak rate. In this instance k(t) varies between 

0 and g. B is the rate at which k(t) approaches its maximum value as a function of s(t) 

and –A defines the lowest instantaneous amplitude at which the membrane remains 

permeable. The synaptic cleft contains a fluctuating amount of transmitter substance 

c(t). The amount of transmitter lost is: 

 lc(t)dt 

The amount of transmitter substance returned to the hair cell is: 

 rc(t)dt  

Following the reuptake, rc(t)dt, the transmitter is subject to reprocessing delays and 

forms a reprocessing store, w.  



  

 dw/dt = rc(t) – xw(t) 

A fraction xw(t)dt of the transmitter in this store is continuously released into the free 

transmitter pool. Free transmitter is replenished at a rate of y[M-q(t)]. M is the 

maximum amount of transmitter in the transmitter pool. The cell transmitter level q(t) is 

replenished through manufacture and return from the cleft but is depleted by loss into 

the cleft. 

 dq/dt = y[M-q(t)] + xw(t) - k(t)q(t) 

The cleft transmitter level c(t) is replenished by release from the hair cell and depleted 

by loss and return to the hair cell. 

 dc/dt = k(t)q(t) – lc(t) – rc(t). 

Spike occurrence in the auditory nerve is assumed to be linearly and probabilistically 

related to the residue of transmitter substance left in the cleft after the loss and reuptake. 

The probability of a spike occurring is: 

 Prob (event) = hc(t)dt, h is a constant. 

The parameters of this model were optimised by Meddis [Meddis 1987] in order to 

simulate as closely as possible known responses at the hair cell-auditory-nerve synapse. 

The parameters of the model are set to simulate a high spontaneous-rate fibre. A feature 

of the model is its ability to simulate the decrease in phase locking for high frequency 

stimuli. The rate at which the transmitter is cleared from the cleft, loss and reuptake, is 

linked to the models ability to reflect the fine structure of the stimulus. It was noted that 

although this movement of transmitter causes a decrease in phase locking in the model 

it is not necessarily a true explanation of phase locking. Phase locking is less evident 

when this rate is slow relative to stimulus frequency. 

4. Periodicity detection 

The next stage of the model uses autocorrelation to detect periodicity in each frequency 

channel. The autocorrelation of a sequence x[n] is: 
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Q is the length of the data sequence and m is the autocorrelation lag. For m=0, a[m] is a 

calculation of the total energy in the signal. The autocorrelation of a sequence defines 

how similar a signal is to a time-delayed version of itself. This similarity is greatest 

when the time delay is zero (the zero lag point). If the signal is periodic then the 

autocorrelation value at some non-zero value of the lag is close in value to the zero lag. 

The autocorrelation pattern of a periodic signal is also periodic. The periodicity value of 

the signal is indicated by the position of the first maximum after the zero lag maximum. 

 The frequency selectivity of the auditory system refers to its ability to resolve 

the frequency components of a complex sound. The ear has limited frequency 

resolution. The discrimination by the auditory system of individual frequency 

components in the sound depends in part on the frequency resolution of the basilar 

membrane. Resolution on the basilar membrane is generally described in terms of the 

critical band. If the action of the basilar membrane is thought of in terms of overlapping 



  

band-pass filters, then the ERB provides a practical measure of the critical band. The 

waveform of a frequency component that is resolved by a filter is a sine wave of that 

frequency. The frequency channel is resolved. When more than one harmonic, or 

frequency component, passes through a filter the output pulses at a rate equal to the 

frequency difference between the adjacent harmonics. There is a modulation present in 

the amplitude envelope at the output of the filter. This is an unresolved frequency 

channel. For a single harmonic sound the periodicity in the amplitude modulation is 

equal to the fundamental frequency. Autocorrelation is used to determine the main 

channel periodicity and the periodicity in the amplitude modulation. 

 In the next stage the envelope of the autocorrelation pattern for each frequency 

channel is extracted. The envelope of the autocorrelation pattern is the contour formed 

by the maxima in the pattern. For a resolved frequency channel the envelope pattern 

forms a straight line. If the frequency channel is unresolved there is a modulation 

present in the envelope pattern. The least squares method is used to detect envelope 

modulation in the autocorrelation pattern. A straight line is fit to the envelope of the 

autocorrelation maxima in each frequency channel. For a channel that is resolved, the 

straight line will fit quite well to the envelope maxima. For a channel that is unresolved 

the contour of the envelope maxima will deviate from a straight line. The correlation 

coefficient is used as a measure of how far the envelope contour of the maxima deviates 

from the straight line; it indicates the amount of envelope modulation in each frequency 

channel. A correlation coefficient value of 0.997 was chosen as a threshold value to 

indicate the presence or absence of envelope modulation. A value greater than this 

threshold value indicates that no envelope modulation is present.  The closer the 

envelope of the maxima is to a straight line the less modulation there is in the channel. 

Frequency channels are divided into those with and without envelope modulation. 

 If the envelope modulation is periodic, its periodicity value is calculated. The 

criterion for periodicity used is success in a heuristic search for the first maximum 

which has corresponding maxima at integer multiples of its lag value in the 

autocorrelation pattern. 

5. Interval and chord identification 

This algorithm identifies the major, minor, diminished, augmented triads and the 

dominant 7
th 
chord. A harmonic triad is made up of three pitch classes the root, third 

and fifth of the triad. More than three notes in the triad chord indicates an octave 

doubling. For major and minor triads the interval between the root and the fifth is a 

perfect fifth. For the major triad the interval between the root and the third is a major 

third and for the minor triad the corresponding interval is a minor third. The diminished 

triad can be considered as consisting of a minor third interval and a diminished 5
th
 

interval from the root, or two adjacent minor third intervals. The augmented triad is 

made up of a major third interval and an augmented 5th interval from the root or two 

adjacent major 3rd intervals. The dominant 7th has four distinct pitch classes and consists 

of a major triad with an added minor 7th interval above the root. 

 In general if the ratio between the two fundamentals of a musical interval is m:n, 

with m and n integers, every nth harmonic of the first fundamental will correspond in 

frequency with every mth harmonic of the second. When the ratio is small integers, 

such as 2:1 in the octave interval, there will be many exact correspondences of 



  

frequencies. However in equal tempered tuning, which was formed out a requirement 

for equally spaced intervals (in terms of frequency ratio) regardless of tonality, all 

intervals (apart from the unison and octave) match approximately to the corresponding 

interval found in the harmonic series. The difference between the nearly coinciding 

harmonics is small, within 5% of the critical bandwidth [Howard and Angus 2001]. 

 The frequency channels are grouped according to pitch class. The envelope 

modulation periodicity and the main channel periodicities are collated. Each pitch class 

is assigned a priority based on the number of channels with that periodicity. The highest 

priority pitch class is the one that occupies the maximum number of channels. For a 

single harmonic sound, or an octave interval, the highest priority pitch class is the pitch 

class to which the fundamental frequency belongs. This is because the fundamental 

frequency appears as a beat periodicity in addition to possibly being present as a 

resolved frequency component.  

 The periodicities corresponding to the root, third and fifth generally appear as 

high priority pitch classes. The interval size in semitones is computed between all high 

priority pitch classes, searching for the fifth, and then for the major or minor third. 

6. Results 

This model was tested on chords created from instrument samples taken from the 

McGill University master sample (MUMS) CD set and on a recording of the second 

movement of Bach’s Brandenburg Concerto No. 2 in F major. The instruments in the 

recording are recorder, oboe, violin, cello and harpsichord.  From both sets of results it 

can be seen that the model performs well in identifying chords created from different 

harmonic instruments.  

 Table 1 holds the results of the instrument sample chords. The individual 

instrument samples were not balanced for equal loudness when creating the chords but 

kept at the original sample level. The durations were measured from the start of the 

instrument sample. Table 2 shows results for chords taken from the second movement 

of J.S. Bach’s Brandenburg Concerto. The analysis was run on single time frames with 

starting time points corresponding as close as possible to one fifth, two fifths, three 

fifths and four fifths of the duration of the sound. The model performed well on major, 

minor and augmented chords. The performance of the model was less reliable on the 

dominant 7
th
 and diminished chords. It may be noted that the diminished chord forms 

part of a dominant 7th chord (i.e. C, E, G, Bb is a dominant 7th and E, G, Bb is a 

diminished chord). 

 In table 1 four out of the seven chords were recognized correctly in all the time 

frames tested. Every chord was identified correctly in the first time frame. In the second 

and third time frame four out of the seven were correct. In the final time frame six out 

of the seven were correctly recognized. The G major dominant 7th chord was incorrectly 

identified in the second and third time frame. In the second time frame it was identified 

as a minor triad with root B. The F# is the third and sixth harmonic of the oboe B and is 

strong in this time frame. This same error occurred with the diminished triad in the 

second and third time frames. For the A major dominant 7th chord the identification as a 

C# minor triad (C#, E, G#) arises because of the presence of a strong G#, a third and 

sixth harmonic of the C# on the oboe, and the E is already present to complete the triad.  



  

 In the second table three out of the eleven chords were correctly recognised in 

all time frames tested. In the first and second time frames five and six out of eleven 

were correctly recognised. In the third and fourth time frame ten out of eleven chords 

were correctly identified. The second D minor chord in table 2 was identified as an F 

major chord in the first two time frames. This is due to the C, which is present as the 

third and sixth harmonic of F and occurs in more channels than D, for these two time 

frames.  The third D minor chord in table 2 was identified as a major chord with root 

note Bb. The Bb arises as a difference periodicity in the unresolved channels. Both D 

and F are strong periodicities in this time frame. A and Bb occur with equal strength. In 

the G major dominant 7
th
 chord analysis the F# is in a significant number of channels. 

The F# is a third and sixth harmonic of B. Some harmonics present may be stronger 

than the fundamental frequency.  

 

 

Table 1. Results of chords built from recorded instrument samples 

Starting point (of duration) for analysis 

Chord type 

and duration 

(s) of chord 

Instruments 1/5 2/5 3/5 4/5 

 F major (0.6s) cello C3, violin 

F5, oboe A5 

Major, root F Major, root F Major, root F Major, root F 

 G minor (0.5s) cello G3, violin 

Bb5, flute D6 

Minor, root G Minor, root G Minor, root G Minor, root G 

G major 

dominant 7th 

(0.5s) 

cello G2, violin 

F5, oboe B4, 

flute D6 

Major, root G 

dominant 7th 

*minor, root B *undefined Major, root G 

dominant 7th 

A major 

dominant 7th 

(0.9s) 

Cello A3, oboe 

C#4, piano G4, 

flute E6 

Major, root A 

dominant 7th 

Major, root A Major, root A *Minor, root 

C# 

Diminished B, 

D, F (0.9s) 

oboe B4, flute 

D6, violin F5 

Diminished B, 

D, F 

*Minor triad, 

root B 

*Minor triad, 

root B 

Diminished B, 

D, F 

Augmented D, 

F#, Bb (0.9s) 

oboe D4, piano 

F#3, violin Bb5 

Augmented D, 

F#, Bb 

Augmented D, 

F#, Bb 

Augmented D, 

F#, Bb 

Augmented D, 

F#, Bb 

Augmented 

C#, A, F (0.9s) 

oboe C#4, 

piano F4, oboe 

A5 

Augmented 

C#, F, A 

Augmented 

C#, F, A 

Augmented 

C#, F, A 

Augmented 

C#, F, A 

 

 



  

Table 2. Results of chords from the 2
nd
 movement of Bach’s Brandenburg 

Concerto No. 2 in F major 

Starting point (of duration) for analysis 

Chord type and 

duration (s) of 

chord 

Bar 

number 

1/5 2/5 3/5 4/5 

D minor 0.7s (cello 

D3, violin A4, 

oboe F5) 

29 (3rd 

beat) 

Minor, root D Minor, root D Minor, root D Minor, root D 

D minor 0.5s (cello 

D3, oboe F4, 

recorder A5) 

7 (3rd beat) *Major, root F *Major, root F Minor, root D Minor, root D 

F major 0.6s (cello 

C3, violin F5, oboe 

A5) 

35 (1st 

beat) 

*Minor, root 

C 

Major, root F Major, root F Major, root F 

G minor 0.4s (cello 

D3, oboe G5, 

recorder Bb5) 

37 (1st 

beat) 

Minor, root G Minor, root G Minor, root G Minor, root G 

G minor 0.5s (cello 

G3, violin Bb5, 

recorder D6) 

37 (3rd 

beat) 

*Major, root C *Undefined Minor, root G Minor, root G 

C major dominant 

7th 0.3s (cello C3, 

violin E5, oboe 

Bb4, recorder G5) 

18 (3rd 

beat) 

*Undefined Major, root C, 

dominant 7th 

Major, root C, 

dominant 7th 

Major, root C, 

dominant 7th 

G major dominant 

7th 0.5s (cello G2, 

violin F5, oboe B4, 

recorder D6) 

22 (3rd 

beat) 

*Minor, root 

B 

*diminished B, 

D, F 

*Minor, root B Major, root G 

A major dominant 

7th 0.3s (cello A3, 

violin C#6, oboe 

G4, recorder E6) 

28 (3rd 

beat) 

Major, root A, 

dominant 7th 

Major, root A, 

dominant 7th 

Major, root A, 

dominant 7th  

Major, root A, 

dominant 7th 

D minor 0.6s (cello 

D3, violin A4, 

recorder F5) 

57 (3rd 

beat) 

Minor, root D *Major, root 

Bb 

Minor, root D Minor, root D 

Diminished G#, F, 

B 0.6s (cello G#2, 

oboe F4, recorder 

B5) 

8 (1st beat) Diminished 

G#, F, B 

*undefined Diminished 

G#, F, B 

Diminished 

G#, F, B 

Augmented A, 

0.2s, C#, F (cello 

A2, violin C#6, 

oboe A4, recorder 

F6) 

28 (3rd 

beat) 

Major, root A Augmented A, 

C#, F 

Augmented A, 

C#, F 

Augmented A, 

C#, F 



  

7. Conclusions 

The performance of a computational model of harmonic chord recognition has been 

demonstrated. The model was evaluated on a set of chords created from instrument 

samples and on chords from a recording of the second movement of J.S. Bach’s 

Brandenburg Concerto No. 2. The results demonstrate that the model works well on 

harmonic chords created from different instruments. Results are good for the major, 

minor and augmented chords but the performance is less reliable in the case of the 

dominant 7th and diminished chord. The results for the chords from the Bach recording 

tend to improve towards the middle and end of the sound (the last two time frames). 

Errors at the start of the chord may be due to transients or some reverberation of the 

previous harmony in the recording. In the case of chords created from the instrument 

samples errors did not occur at the start of the chords.  
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