
Andante: A Mobile Musical Agents Infrastructure

Leo Kazuhiro Ueda
���

, Fabio Kon
�

�

Department of Computer Science
Institute of Mathematics and Statistics (IME) – University of São Paulo

Rua do Matão, 1010 – 05508-090 São Paulo, SP – Brazil
http://gsd.ime.usp.br/andante

lku@ime.usp.br, kon@ime.usp.br

Abstract. In the last decade, researchers in the area of distributed systems cre-
ated the concept of mobile agents: active, autonomous objects capable of ex-
ecuting computation in a computer network, migrating from node to node. We
propose the use of this new concept and related technology for the creation and
performance of music within a distributed computing environment.
In this paper, we introduce Andante, an open-source infrastructure for the con-
struction of distributed applications for music composition and performance
based on mobile musical agents. We describe a prototype implementation of
this infrastructure based on Aglets, a Java mobile agent platform, as well as a
sample application built on top of this infrastructure.

1. Introduction

Composers have always looked at contemporary scientific achievements to devise new
forms of producing their art. Over the past decades, we have witnessed an astonishing
development of Computer Science that led to an intensification of its relationship to Mu-
sic [Miranda, 2001, Roads, 1996]. Nowadays, desktop computers can be equipped with
inexpensive hardware and software and produce high quality sound. The Internet has also
brought many new possibilities for music making [Kon and Iazzetta, 1998].

In this context, we are interested in discovering how an advanced concept in Com-
puter Science, namely, Mobile Agents, can be applied to introduce new forms of musical
composition and performance.

We introduce in this paper the Andante project, which offers an infrastructure to
create distributed applications that use Mobile Musical Agents to compose and perform
music. Using Andante, programmers can build their own agents to build such appli-
cations. We now wish to attract the interest of composers and researchers to use this
infrastructure to conduct interesting musical experiments.

2. Mobile Agents

A mobile agent is a computer program that can interrupt its execution on a host, mi-
grate to another host travelling through a network, and resume its execution on the new

�
Supported by CAPES.



host [Kotz and Gray, 1999]. It is an autonomous program in the sense that it can decide
itself to migrate and it may react to changes on the host environment.

This concept brings advantages [Lange and Oshima, 1999] over the traditional
client/server paradigm. Since the agent migrates to a foreign host, remote commands
are actually executed locally, so the latency caused by network communications is elimi-
nated and the traffic is reduced. Applications that involve the processing of large amounts
of distributed data can benefit from the use of mobile agents.

Our infrastructure is built on top of the Aglets Software Development Kit (ASDK).
Aglets [Lange and Oshima, 1998] is a mobile agent system, written in Java and originally
developed by IBM (see http://www.trl.ibm.com/aglets). It is currently an open
source project (see http://aglets.sourceforge.net), offering libraries and appli-
cations to implement and deploy Java mobile agents.

The choice of Aglets has more to do with the benefits of Java as a middleware
platform. Java provides a good solution in terms of platform independence. This is a
major concern in the Andante project, considering that we want both musicians and pro-
grammers to use the system in different environments. To state more precisely, we want
the system to run on distinct operating systems such as Windows, MacOS, and Linux.
Moreover, the Java Swing is a solid library for the construction of platform-independent
graphical interfaces and the Java Sound API (see http://java.sun.com/products/
java-media/sound) simplifies the use of audio devices.

3. Mobile Musical Agents

We define mobile musical agent (simply agent, from now on) as a mobile agent which
participates in a musical process. It may do so by performing one or more of the following.

Encapsulating an algorithm. As a computer program, an agent can carry algorithms, in
particular composition algorithms [Miranda, 2001, Roads, 1996, Rowe, 1993], allowing
it to produce music. These algorithms may also require input data that may be carried
with the agent.

Interacting and exchanging information with other agents. Similarly to a situation
where real musicians play together on a stage, several agents can interact with each other.

Interacting with real musicians. An agent can receive commands or audio/musical data
from a real musician. This interaction could be as simple as reproducing the notes played
by the musician on a keyboard. The musician could also dynamically control parameters
of an algorithm executed by an agent, for example, through a MIDI keyboard.

Reacting to sensors. Agents can receive commands from other non-agent programs.
These commands could be triggered by sensors so that the agents could react to events in
the real, physical world.

Migrating. A migration process can be set off by the above actions. In other words, the
agent can decide to migrate (1) stochastically or deterministically, based on an algorithm;
(2) based on the interaction with other agents; (3) based on the interaction with musicians;
and (4) by reacting to sensors. An agent that migrates resumes its performance when it
arrives to its destination.



A client
application

Stage StageMobile
Musical
Agent

Mobile
Musical
Agent

Mobile
Musical
Agent

Mobile
Musical
Agent

Mobile
Musical
Agent

Audio
Device

Audio
Device

Client GUI

Figure 1: Architectural overview

As an example, consider a museum or exhibit hall equipped with several comput-
ers connected by a network. Each computer could be equipped with motion sensors and
host a few agents. The agents would communicate to each other and play a distributed
music piece in a synchronized manner. A specific agent could receive information from
motion sensors in order to follow a person who walks around the room (using its ability
to migrate). The listener perception would be that part of the music is following him.
Another part of the music, on the other hand, could run away from the listener migrating
to computers far from where the listener is.

4. Andante Architecture

An agent performs its actions in a heterogeneous computer network environment. The
computers in this network must run a host software that we call Stage. A Stage can host
multiple agents. Agents in a Stage can perform their actions, including interact with each
other and play music.

To produce sound, the Stage maintains an Audio Device, which in turn provides
musical instruments for the agents to “play”.

We have thus defined three key elements of the Andante architecture: the (mobile
musical) agents, the Stage, and the Audio Device. Figure 1 gives an abstract overview of
the architecture. An additional fourth element, the Client GUI, is not necessarily part of
the Andante infrastructure, but it plays the important role of supporting human interaction
with agents.

4.1. Implementation

A UML [Booch et al., 1998] class diagram for the abstract overview would look like Fig-
ure 2.

Our initial prototype is completely based on Java. However, since we would
like to allow parts of the system to interact with components written in other pro-
gramming languages, all the communication among the components are performed via
CORBA [OMG, 2002]. The CORBA middleware allows programs written in different
languages and running on different operating systems to communicate to each other seam-



Channel
+Number: int
+Instrument: int
+playNote(n:Note)
+sendMessage(m:Message)

AudioDevice

+sendMessage(m:Message)
+noteOn(pitch:int,intensity:int)
+noteOff(pitch:int)

MobileMusicalAgent

+setProperty(propName:string,propVal:string)
+processNote(n:Note)
+play()
+pulse()

Stage

+getChannel(num:int): Channel
+getMetronome(): Metronome

Client GUI

Figure 2: Class diagram of the abstract overview

lessly. We will need this flexibility in the future when we implement a variety of audio
devices such as a CSound [Boulanger, 2000] device.

As mentioned in Section 2, the infrastructure is based on the ASDK. The Mo-
bileMusicalAgent is a subclass of Aglet so it can migrate from one machine to the
other carrying its code and state. The Stage class is capable of hosting Aglets (again,
with the help of the ASDK). Thus, MobileMusicalAgent and Stage must be writ-
ten in Java.

Lastly, the MobileMusicalAgent class offers methods to create instances of
itself and to send them to a Stage.

4.2. An Example Scenario

We now describe a hypothetical situation that illustrates a possible use of the described
architecture.

� Agent implementation: Assume we have implemented the SampleAgent class
(a subclass of MobileMusicalAgent). For simplicity, we will use only one
instance of this agent in this example, although it is possible to implement and use
several different kinds of agents. Let us call this instance sampleAgent.

� Dispatching: after being instantiated, sampleAgent needs to be dispatched to a
host Stage. The Stage is an instance of the Stage class, let us call the instance
stage.

� Getting a Channel: to be able to play something, sampleAgent has to gain access
to the Audio Device. The stage has an instance of the AudioDevice class,
let us call it audioDevice. The sampleAgent can then access the audioDevice by
getting a Channel from the stage. The stage actually provides an instance of the
Channel class, which we shall call channel.

� Playing notes: sampleAgent can now play notes using channel.
� GUI control: sampleAgent may receive commands from a graphical user interface

(GUI) while it is playing.

Figure 3 depicts this scenario more precisely (with a UML sequence diagram).



(loop) Until sampleAgent
receives the stop message.

sampleAgent

User

Client GUI stage channel audioDevice

dispatch
dispatch

channel

start

playNote
noteOn

noteOff

start

Figure 3: UML sequence diagram for the example scenario

4.3. Technical Issues

Our current implementation of the Andante infrastructure carries a number of simplifica-
tions. The use of the Java Sound API to generate sound is one of them.

We implemented the AudioDevice class using the MIDI classes provided by
the Java Sound API. As a result, the interfaces of the Andante infrastructure are based on
the MIDI protocol. On the other hand, we were careful not to get too influenced by this
protocol so that we could experiment with other alternatives for sound generation in the
future. In fact, as we already mentioned, we plan to use the CSound package to implement
another Audio Device in the near future.

In our experiments we found that the Java Sound API has a very significant latency
and jitter problem in its MIDI synthesizer class. To overcome this, we used an alternative
platform-dependent implementation of the Java Sound API called Tritonus (see http:

//www.tritonus.org). The Andante infrastructure can still use the official Java Sound
API implementation as a platform-independent solution.

5. Sample Application: NoiseWeaver

To give a more concrete demonstration of the architecture viability, we built a sample
application that takes advantage of the Andante infrastructure. This application, which
we call the NoiseWeaver, composes and plays stochastic music in real-time.

It implements only one kind of agent: the NoiseAgent. This agent generates a sin-
gle melody in real-time. In the generated melody, simulations of selected types of noise
determine the pitch, intensity, and duration of notes1. For example, a certain NoiseAgent
could play a melody in which the pitch of the notes is determined by a sequence of num-

1See the fractal algorithm description in [Roads, 1996] (fourth printing, pages 880–886).



bers that simulates a pink noise. This same agent could have a brownian noise sequence
to determine the duration of the notes, and a white noise sequence for the intensity.

The Stage Metronome service is used to synchronize the NoiseAgents. Each
NoiseAgent registers itself with the Metronome service so the Metronome can send
pulse messages to all registered agents at regular times. The time interval between
pulses is determined by the Metronome time signature and tempo properties, and all the
registered agents receive the pulse at (almost) the same time.

The NoiseWeaver provides a GUI to control several hosted NoiseAgents. It can
find the NoiseAgents using the CORBA Naming Service [OMG, 1998].

A NoiseAgent holds various properties that influence the generation of its melody
and the GUI lets a user change these properties, even while the agent is playing on remote
nodes. Figure 4 shows a screen shot of the GUI.

The Find tab lists the NoiseAgents

Figure 4: The NoiseWeaver GUI

found in the distributed system composed of
the machines collaborating to generate the mu-
sical piece. The Control tab acts as a control
panel for each of the NoiseAgents listed in the
Find tab. On the Commands pane, we have:

Start: tells the agent to start (or resume) play-
ing.

Stop: tells the agent to stop playing.

Dispatch: tells the agent to migrate to another
Stage.

And on the Properties pane we have:

Pitch: PitchGenerator defines the type of
noise which generates the pitch of the notes.
The selected noise is used to generate integer
numbers which are then mapped to notes in a
certain musical scale. The Scale property de-
termines the scale to which the generated pitch
refers. ScaleStart is the point where the se-
lected scale starts. The value 60 is equivalent
to the middle C (as in the MIDI protocol). The ScaleLength determines the length (num-
ber of notes) of the chosen scale.

Intensity: IntensityGenerator defines the type of noise used to generate note intensity
(velocity, in MIDI terminology). The intensity is an integer between 0 and 127, Intensi-
tyMin/Max determine the interval of possible intensity values.

Duration: similar to the intensity settings. The duration values are related to the
Metronome time signature.

Channel: the channel to which the agent will output its melody.

Instrument: the instrument (patch) to be used to play the melody.



The possible values for the Generator properties are Constant, White, Pink, and
Brownian. For Scale, we have Diatonic, WholeTone, Chromatic, HarmonicMinor, Har-
monicNatural, Pentatonic, Blues, PentaBlues, and Hirajoshi.

With NoiseWeaver, it is possible to have several NoiseAgents playing a noise-
based melody each, and control the way all these melodies are generated using its GUI.

6. Related Work

In DASE (Distributed Audio SEquencer, http://www.soundbyte.org), users running
client applications work with a sequencer to build musical loops. These loops are sent to
a centralized server, where they are all played together.

Musical Agents [Fonseka, 2000] is a distributed algorithmic composition system
where musical agents collaborate with each other to create a musical performance. This
system defines a scripting language designed for musicians to write algorithmic composi-
tions. Here, a musical agent is an application capable of executing scripts in this language,
and an agent can communicate with similar agents over a network. The sound is generated
by MIDI instruments.

Similarly to the Andante project, both DASE and Musical Agents have a collab-
oration aspect, where music is created in a distributed fashion. However, DASE is not
agent-based (the loops are sent and presumably built by humans) and the Musical Agents
are not mobile. Another fundamental difference is that the Andante’s proposal is to offer
a generic infrastructure on top of which programmers and composers will build musical
applications/compositions.

In the field of Artificial Life, multi-agent systems may be used to model biologi-
cal phenomena. Miranda [Miranda, 2002] presents “a simulation where a society of au-
tonomous agents evolves a common repertoire of intonations from scratch by interacting
with one another.” His goal is to study the relationship between the evolution of mu-
sic and language. The Andante infrastructure would be a very suitable environment for
experimentations with such multi-agent simulations.

7. Ongoing and Future Work

We are currently working on new applications and musical pieces created over the An-
dante infrastructure. Our ongoing and future work include the following.

� The NoiseMaestro, a scripted version of the NoiseWeaver. Instead of being con-
trolled by a GUI, the NoiseAgents will be guided by the NoiseMaestro, which
is controlled by a script (analogous to a music score). This script defines time-
stamped changes in properties of specific NoiseAgents. So a script would be a
stochastic musical piece with a fixed structure.

� An agent that receives notes from a real musician. The notes are inputed through a
musical keyboard and processed by an agent which generates music based on the
musician’s input, resembling existing interactive music systems [Rowe, 1993].

� Agents that stream audio data could allow musicians playing conventional instru-
ments to participate in a distributed Andante performance with musicians in dif-
ferent locations.



� The use of the CSound system for sound synthesis. We will then have other pos-
sibilities for sound generation and, therefore, new ideas for making musical.

We are improving the usability of the Andante user interfaces, as it is currently not friendly
to lay users. Although the Andante infrastructure is already functioning well, we will
continue to evolve its architecture, adapting it to the needs of new users and applications.

8. Conclusions

We are looking for composers willing to experiment with the Andante infrastructure and
applications. Their feedback will be of great value for the refinement of our system.

We want Andante to be an open community of art and technology lovers who
collaborate to create musical ideas, mobile musical agents, and to develop the enabling
software infrastructure. We have created a Web site through which programmers, musi-
cians, researchers, and composers can collaborate with the project.

References

Booch, G., Rumbaugh, J., and Jacobson, I. (1998). The Unified Modeling Language User
Guide. Addison-Wesley.

Boulanger, R., editor (2000). The CSound Book. The MIT Press.

Fonseka, J. R. (2000). Musical agents. Honours thesis, Monash University.

Kon, F. and Iazzetta, F. (1998). Internet music: Dream or (virtual) reality. In Proceedings
of the 5th Brazilian Symposium on Computer Music, Belo Horizonte, Brazil.

Kotz, D. and Gray, R. S. (1999). Mobile agents and the future of the internet. ACM
Operating Systems Review, pages 7–13.

Lange, D. B. and Oshima, M. (1998). Programming and Deploying Java Mobile Agents
with Aglets. Addison-Wesley.

Lange, D. B. and Oshima, M. (1999). Seven good reasons for mobile agents. Communi-
cations of the ACM, 42(3):88–89.

Miranda, E. (2001). Composing Music with Computers. Music Technology Series. Oxford
(UK): Focal Press.

Miranda, E. R. (2002). Mimetic development of intonation. In Proceedings of the 2nd
International Conference on Music and Artificial Intelligence (ICMAI 2002). Springer
Verlag - Lecture Notes on Artificial Intelligence.

OMG (1998). CORBAservices: Common Object Services Specification. Object Manage-
ment Group, Framingham, MA. OMG Document 98-12-09.

OMG (2002). CORBA v3.0 Specification. Object Management Group, Needham, MA.
OMG Document 02-06-33.

Roads, C. (1996). The Computer Music Tutorial. The MIT Press.

Rowe, R. (1993). Interactive Music Systems. The MIT Press.


