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Abstract: There have been a number of interesting applications of A-Life in 
music, ranging from associating musical notes to the cells of cellular 
automata, to forging genotypes of musical parameters for generating music 
using genetic algorithms. From the three approaches surveyed in this paper, 
only the cultural approach allows for the study of the circumstances and 
mechanisms whereby music might originate and evolve in virtual communities 
of musicians and listeners. This approach considers musical systems in the 
context of the origins and evolution of cultural conventions that may emerge 
under a number of constraints, such as psychological, physiological and 
ecological constraints. 

  

1. Introduction 
A-Life (or Artificial Life) is a discipline that studies natural living systems by 
simulating some of their biological aspects on computers (Langton 1997). The attempt 
to mimic biological phenomena on computers is proving to be a viable route for a better 
theoretical understanding of living organisms, let alone the practical applications of 
biological principles for technology (robotics, nanotechnology, etc.) and medicine. 
Because A-Life deals with such complex phenomena, it has fostered the development of 
a pool of research tools for studying complexity, most notably modelling tools based 
upon the notion of interacting agents. It is interesting though, that these tools are also 
proving to be useful in fields other than Biology, most notably Social Sciences (Gilbert 
and Troitzsch 1999), Linguistics (Kirby 2002; Cangelosi and Parisi 2001) and 
Computer Music (Degazio 1999; Todd 2000; Dahlstedt and Nordhal 2001; Miranda 
2002a). 
 The interactive agent-based modelling tolls developed by the A-Life community 
provides a rich framework within with to build systems of socially interacting 
individuals, but not all approaches take on board what is perhaps the most determinant 
aspect of musical development, namely social dynamics. In this paper we review three 
approaches to using models of interacting agents in music composition with special 
focus on those systems that do take social dynamics into account. 
 



 

2. Approaches to using models of interacting agents in music composition 
There have been a number of interesting applications of A-Life models of interactive 
agents in music, ranging from associating musical notes to the cells of cellular automata 
(Hunt et al. 1991) to forging genotypes of musical parameters for generating music 
using genetic algorithms (Degazio 1999). We identify at least three approaches to the 
use of these models for composition: (a) rendering of extra-musical behaviour, (b) 
genetic algorithm-inspired and (c) cultural.   
 
2.1 Rendering of extra-musical behaviour 
First, we can construct models of artificial agents going about their business in their 
simulated world (e.g., moving around, looking for food, avoiding bumping into rocks 
and each other, and so on) and as they behave, we convert some aspect of their behavior 
into sound and listen to them.  These agents are not musical in the sense that they are 
not designed with any musical task in mind. Rather, some sort of “sonification” or 
“musification” to their behavior patterns is applied in order to see (or hear) what 
emerges.  Their social interactions will affect the music we hear, but the music being 
produced will not affect their social interactions, nor anything else about their lives; 
instead, the music is a side-effect of whatever the agents are doing. 
 A system called Music Insects, by Toshio Iwai (1992), is well-known example 
of this approach. It incorporates a small set of insect-like creatures moving over a two-
dimensional landscape onto which a user can place patches of different colours.  When 
an insect crosses a patch of a particular colour, it plays a particular associated note.  
Thus, once an environment of colour-note patches has been set up, the movements of 
the insects are translated into sound.  By appropriate placement of patches and choice of 
behavioral parameters of the insects (e.g., their speed and timbre), different musical 
performances can be created. 
 In a related but more abstract vein, Miranda (1993), Bilotta and Pantano (2001), 
and others have explored “musification” of the dynamic spatial patterns created by 
cellular automata; for a review, see (Miranda 2001).  In a cellular automaton, cells (or 
locations) in a grid (e.g., a two-dimensional environment) can have different states (e.g., 
the “on” state could be interpreted as “this cell contains an agent”), and the states of 
cells at one point in time affect the states of nearby cells at the next point in time (e.g., 
an “on” cell at time t can make a neighboring cell turn “on” at time t+1).  As different 
cells in a two-dimensional field are turned on by the states of neighboring cells 
according to particular production rules, the overall activity pattern of the cells in this 
“world” can be converted to sound by further musification rules.  Because cellular 
automata are commonly used to study the creation of complexity and dynamic patterns, 
their behavior can produce interesting musical patterns as well when sonified. 
 
2.2 The genetic algorithms-inspired approach 
A second, more directly musical approach is to let each individual produce its own 
music or tune as it goes about its existence, and to use this music to determine the 
survival or reproduction of each agent.  The songs present in the population can evolve, 
as more successful songs lead to greater survival and reproduction of the individuals 
singing those songs, and hence to more copies of versions of those songs in the next 
generation. This artificial evolutionary process can lead to more complex or interesting 
pieces of music if allowed to go on long enough.  In models of this type, music 



  

production is intrinsic to each individual, rather than merely being a consequence of 
non-musical behavior as in the previous approach. The music an individual produces 
has material consequences for its own life in turn, so that in some sense the music 
matters to the agents. The music produced by an individual in this case is not heard and 
reacted to by other individuals in the population. Some external almighty critic 
evaluates the outcome. This critic can be an artificially-designed judge, such as an 
expert system looking for particular melodic or harmonic developments.  Or it can be a 
human user, listening to songs one at a time or to the music composed by whole the 
population at once, and rewarding those individuals who produce more pleasing songs, 
or musical parts, with more offspring.  So, although a population of individuals is 
creating music here, each individual still remains blissfully unaware of what the others 
are singing, and the truly social element remains lacking from the musical process. 
 There have been a number systems in which a population of musical agents has 
been reduced to its bare bones, or rather “genes”: each individual is simply a musical 
phrase or passage, mapped more or less directly from the individual’s genetic 
representation, or genotypes. These genotypes are in turn used in an artificial 
evolutionary system that reproduces modified (mutated and shuffled) versions of the 
musical passages in the population's next generation, according to how “fit” each 
particular individual is. Fitness can be determined either by a human listener, as in the 
Vox Populi system (Moroni et al. 1994), or by an artificial critic, as in Spector and 
Alpern’s (1995) use of a hybrid rule-based and neural network critic to assess evolving 
jazz responses. Whereas in the former higher fitness are assigned to solos that sound 
better, in the latter assigns higher fitness to responses that more closely match learned 
examples or rules. 
 When human critics are used, these evolutionary systems can produce pleasing 
and sometimes surprising music, but usually after many tiresome generations of 
feedback.  Fixed artificial critics take the human out of the loop, but have had little 
musical success so far. What would happen if we unfix the critics and/or replace the 
human critic by other agents in the artificial world?  This is one of the central ideas of 
the cultural approach, where individuals become both producers and receivers of music. 
  
2.3 The cultural approach 
The cultural approach involves actual social interaction on the basis of the music 
created by individuals.  In this case, agents produce musical signals that are heard and 
reacted to by other agents, influencing for instance the songs that they themselves sing, 
or their proclivity to mate, or their vigilance in defending their territory.  Consequently, 
the music created in this system affects the behavior of the agents living in this system, 
giving it a social role.  This role is not necessarily the one that this music would have in 
the human social world—that is, the agents are creating music that is meaningful and 
effective for their own world, but perhaps not for ours.  However, because this system 
creates music through a social process that is richer than that in the previous two less-
social approaches, it could be that the creative products have the potential to be more 
musically interesting to us, too, as a result.  
 Inspired by the notion that some species of birds use tunes to attract a partner for 
mating, Todd and Werner (1999) designed a model that employs mating selective 
pressure to foster the evolution of fit composers of courting tunes. The model can co-
evolve male composers who play tunes (i.e., sequences of notes) along with female 
critics who judge those songs and decide whom to mate with in order to produce the 



 

next generation of composers and critics. Offspring were then created with a 
combination of the traits of their parents, and over time both songs and preferences 
coevolved to explore regions of “melody space” without any human intervention.  
 Each composer here holds a tune of 32 musical notes from a set of 24 different 
notes spanning two octaves. The critics encode a Markov chain that rates the transitions 
from one note to another in a heard tune. The chain is a 24-by-24 matrix, where each 
entry represents the female’s expectation of the probability of one pitch following 
another in a song. Given these expectations a critic can decide how well she likes a 
particular tune. When she listens to a composer, she considers the transition from the 
previous pitch to the current pitch for each note of the tune, gives each transition a score 
based on her transition table, and adds those scores to come up with her final evaluation 
of the tune. Each critic listens to the tunes of a certain number of composers who are 
randomly selected; all critics hear the same number of composers. After listening to all 
the composers in her courting-choir, the critic selects as her mate the composer who 
produces the tune with the highest score. This selective process ensures that all critics 
will have exactly one mate, but a composer can have a range of mates from none to 
many, depending on whether his tune is unpopular with everyone, or if he has a song 
that is universally liked by the critics. Each critic has one child per generation created 
via crossover and mutation with her chosen mate. This child will have a mix of the 
musical traits and preferences encoded in its mother and father. The sex of the child is 
randomly determined and a third of the population is killed at random after a mating 
session in order not to reach a population overflow. 
 From the many different scoring methods proposed to judge the tunes, the one 
that seems to produce the most interesting results is the method whereby critics enjoy 
being surprised. Here the critic listens to each transition in the tune individually, 
computes how much she expected the transition, and subtracts this value from the 
probability that she attached to the transition she most expected to hear. For example, if 
a critic has a value 0.8 stored in her Markov chain for the A-E transition, whenever she 
hears a note A in a tune, she would expect a note E to follow it 80% of the time. If she 
hears an A-C transition, then this transition will be taken as a surprise because it 
violates the A-E expectation. A score is calculated for all the transitions in the tune and 
the final sum registers how much surprise the critic experienced; that is, how much she 
likes the tune. What is interesting here is that this does not result in the composers 
generating random tunes all over the place. It turns out that in order to get a high 
surprise score, a tune must first build up expectations, by making transitions to notes 
that have highly anticipated notes following them, and then violate these expectations, 
by not using the highly anticipated. Thus there is constant tension between doing what 
is expected and what is unexpected in each tune, but only highly surprising tunes are 
rewarded  (Figure 1).  
 

Figure 1: The critic selects composer at the bottom because it produced the most 
surprising tune. 

 



  

 
 
 The composers are initiated with random tunes and the critics with Markov 
tables set with probabilities calculated from a collection of folk-tune melodies. Overall, 
this model has shown that selection of co-evolving male composers who generate 
attracting tunes, and female critics who assess these tunes according to their 
preferences, can lead to the evolution of tunes and the maintenance and continual 
turnover of tune diversity over time.  
 Currently the model initializes their Markov chains with coefficients computed 
from samples of existing tunes. Would it be possible to evolve such expectations from 
scratch? 
 Miranda’s (2002b) mimetic model may be a plausible alternative to address this 
question. It demonstrates that a small community of interactive distributed agents 
furnished with appropriate motor, auditory and cognitive skills can evolve a shared 
repertoire of melodies, or tunes, from scratch after a period of spontaneous creation, 
adjustment and memory reinforcement.  
 The motivation of the agents is to form a repertoire of tunes in their memories 
and foster social bonding. In order to be sociable, an agent must form a repertoire that is 
similar to the repertoire of its peers. Sociability is therefore assessed in terms of the 
similarity of the agents’ repertoires. In addition to the ability to produce and hear 
sounds, the agents are born with a basic instinct: to imitate what they hear.  
 The agents are equipped with a voice synthesiser, a hearing apparatus, a memory 
device and an enacting script. The voice synthesiser is essentially implemented as a 
physical model of the human vocal mechanism. The agent’s memory stores its sound 
repertoire and other data such as probabilities, thresholds and other parameters such as 
creative willingness, forgetfulness disposition, reinforcement threshold and degree of 
attention. They have a dual representation of tunes in their memories: a motor map 
(synthesis) and a perceptual representation (analysis). At each round, each of the agents 
in a pair from the community plays one of two different roles: the agent-player and the 
agent-imitator. The agent-player starts the interaction by producing a tune pr, randomly 
chosen from its repertoire. If its repertoire is empty, then it produces a random tune. The 
agent-imitator then analyses the tune pr, searches for a similar tune in its repertoire, in, 
and produces it. The agent-player in turn analyses the tune in and compares it with all 
other tunes in its own repertoire. If its repertoire holds no other tune pn that is more 
perceptibly similar to in than pr is, then the agent-player replays pr as a reassuring 
feedback for the agent-imitator; in this case the imitation would be acceptable. 
Conversely, if the agent-player finds another tune pn that is more perceptibly similar to 
in than pr is, then the imitation is unsatisfactory and in this case the agent-player would 
halt the interaction without emitting the reassuring feedback; the agent-imitator realizes 



 

that no feedback means imitation failure. If the agent-imitator hears the reassuring 
feedback, then it will reinforce the existence of in in its repertoire and will change its 
perceptual parameters slightly in an attempt to make the tune even more similar to pr - 
i.e., only if they are not already identical (refer to the algorithm in the Appendix). Over 
time the society builds up a repertoire of common musical (or vocal) phrases through 
their interaction, creating a sort of effective language which, when extended, could 
provide the basis for composition. 
 The graph in Figure 2 shows the evolution of the average repertoire of a 
community of 5 agents after a total of 5000 interactions, with snapshots taken after 
every 100 interactions. The agents quickly increase their repertoire to an average of 
between six and eight tunes per agent. At about 4000 interactions, more tunes appear, 
but at a lower rate. Identical behaviour has been observed in many such simulations 
with varied settings. The general tendency is to quickly settle into a repertoire of a 
certain size, which occasionally increases at lower rates. The pressure to increase the 
repertoire is mostly due to the creativity willingness parameter combined with the rate 
of new inclusions due to imitation failures. Please refer to (Miranda 2002a and 2002b) 
more information. 
 
Figure 2: The evolution of the average size of the repertoire of the whole community. 

 

 
 
3 Conclusion 
A-Life techniques may have varied applications in computer music research. Perhaps 
the most interesting application is for the study of the circumstances and mechanisms 
whereby music might originate and evolve in artificially designed worlds inhabited by 
virtual communities of musicians and listeners. From the three approaches surveyed in 
this paper, only the cultural approach allows for this study. The cultural approach 
considers musical systems in the context of the origins and evolution of cultural 
conventions that may emerge under a number of constraints, such as psychological, 
physiological and ecological constraints.  
References 
Bilotta, E., and Pantano, P. (2001).  Artificial life music tells of complexity.  In E. 

Bilotta, E. R. Miranda, P. Pantano, and P.M. Todd (Eds.), ALMMA 2001: 
Proceedings of the workshop on artificial life models for musical applications 
(pp. 17-28).  Cosenza, Italy: Editoriale Bios. 



  

Cangelosi, A. and Parisi, D. (Eds.) (2001). Simulating the Evolution of Language. 
London, UK: Springer Verlag. 

Dahlstedt, P.  and Nordhal, M. G. (2001). Living Melodies: Coevolution of Sonic 
Communication. Leonardo, 34:3, 243-248. 

Degazio, B. (1999). La evolución de los organismos musicales. In E. R. Miranda (Ed.), 
Música y nueavas tecnologías: Perspectivas para el siglo XXI. Barcelona, 
Spain: L’Angelot. 

Gilbert, G. N. and Troitzsch, K. G. (1999). Simulations for the Social Scientist. 
Buckingham, UK: Open University Press. 

Hunt, A., Kirk, R. and Orton, R. (1991). Musical Applications of a Cellular Automata 
Workstation. Proceedings of the International Computer Music Conference – 
ICMC’91 (pp. 165-166). San Francisco, USA: ICMA. 

Iwai, T. (1992).  Music insects.  Installation at the Exploratorium, San Francisco, USA.  
http://www.iamas.ac.jp/%7Eiwai/artworks/music_insects.html (Commercially 
available as SimTunes in the SimMania package from Maxis.) 

Kirby, S. (2002). Natural Language from Artificial Life. Artificial Life, 8:2,185-215 
Langton, C. G., (Ed.) (1997). Artificial Life: an Overview, Cambridge, USA: The MIT 

Press. 
Miranda, E. R. (2002a).  Emergent sound repertoires in virtual societies. Computer 

Music Journal, 26:2, 77-90. 
Miranda, E. R. (2002b). Mimetic Development of Intonation. C. Anagnostopoulou and 

Smaill, A. (Eds.) Music and Artificial Intelligence – Second International 
Conference, Lecture Notes in Computer Science, Vol. 2445 (pp. 107-118). 
London, UK: Springer-Verlag. 

Miranda, E. R. (2001). Composing Music with Computers. Oxford, UK: Focal Press. 
Miranda, E. R. (1993). Cellular Automata Music: An Interdisciplinary Music Project. 

Interface (now  Journal of New Music Research) 22:1, 3-21. 
Moroni, A., Manzolli, J., van Zuben, F. and Godwin, R. (1990). Vox Populi: An 

interactive evolutionary system for algorithmic music composition. Leonardo 
Music Journal, 10, 49-54. 

Spector, L., and Alpern, A. (1995). Induction and recapitulation of deep musical 
structure. Working Notes of the IJCAI-95 Workshop on Artificial Intelligence 
and Music (pp. 41-48). 

Todd, P.M., and Werner, G.M. (1999).  Frankensteinian methods for evolutionary music 
composition.  In N. Griffith and P.M. Todd (Eds.), Musical networks: Parallel 
distributed perception and performance (pp. 313-339).  Cambridge, MA: MIT 
Press/Bradford Books. 

Todd, P. M. (2000). Simulating the evolution of musical behavior. In N. Wallin, B. 
Merker and S. Brown (Eds.), The origins of music. Cambridge, MA: MIT Press. 

 



 

Appendix: The main algorithm of the enacting script 
 

agent-player - AP agent-imitator - AI 
 

{ IF repertoire(AP) not empty 

     pick motor control for pd; 

     produce pd; 
 
   ELSE 

     generate random motor control for pd;  

     add pd to repertoire(AP); 

     produce pd; } 
 

{ analyse pd } 

{ build perceptual representation; } 

{ IF rep(AI) not empty 

     in = most perceptually similar to pd;     

   ELSE 

     generate random motor control for in; 

     add in to repertoire(AI); 

     produce in; } 
 

{ analyse in; } 

{ build perceptual representation; } 

{ pn = most perceptually similar to in; } 

{ IF pn = pd 

     send positive feedback to AI; 

     reinforce pd in repertoire(AP); 

   ELSE 

     send negative feedback to AI; } 
 

{ IF feedback = positive 

     approximate in to pd perceptually; 

     generate appropriate motor control; 

     reinforce in in repertoire(AI);  } 
 
{ IF feedback = negative 

     IF in scores  good HT; 

          execute add_new_similar(snd); 

     ELSE 

          Modify motor representation of in  
towards pd; } 
 

{ execute final_updates(AP); } 
 

{ execute final_updates(AI); } 
 

 

The add_new _similar() function works as follows: the agent produces a number of 
random intonations and then it picks the one that is perceptually most similar pd to 
include in the repertoire. 
 


