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Abstract 

This paper describes the basic system architecture of Visual Roboser that 
transforms image sequences into sonic structures. It is an extension of the 
Roboser Project and it uses images captured from the environment in real 
time to drive the production of sonic structures. It is based on an architecture 
that integrates a neural simulator and two JAVA modules: one for image 
processing and another for sound generation. Possible applications of Visual 
Roboser include real time composition, multimedia live performances, sonic 
installations and intelligent interactive rooms such as our latest work name 
"Ada: the Intelligent Space" (http://www.ada-exhibition.ch). 

1. Motivations and Background 
In the past six years, we have been working on a novel synthetic interactive composition 
and performance system called Roboser. It consists of a real-world device, its control 
software, called IQR421 (Bernardet et all 2002) and a synthetic composition engine, 
called CurvaSom (Maia et all, 1999). We have explored several aspects of Roboser 
system such as interactive compositions (Wasserman et all 2000), installations for a 
general audience in various configurations, such as interactive dance, and 
communication between humans and large-scale interactive installations (Eng et al., In 
Press). Here we describe another application of RoBoser that integrates real-time image 
processing and sound generation. Our goal is to enlarge our understanding of the 
integration between images and sounds in real time and how this can be used to produce 
sensible musical structures. 

In the literature a series new interface technologies applied to sound generation have 
been reported (see Paradiso, 1999 for an overview). For instance, the Very Nervous 
System (Rokeby 1998), transforms movements into sonic events using video cameras. 
Other projects have been described that use robots as part of interactive music systems, 
for instance EyesWeb (Camurri et al., 2001). EyeWeb integrates movement, music and 
visual languages in a multimodal perspective.   

In all of these approaches the transformation of sensory data to sound is mostly drive by 
a Reactive Approach.  Basically, the space of possible interactions is previously labeled 
with particular sonic reaction. For instance, one specific gesture will trigger one specific 
sonic reaction.  

In contrast to these approaches the Roboser project focused on interactive composition. 
Our aim is to integrate sensory data from the environment in real time and interface this 
interpreted sensor data to a composition engine that produces unique emergent musical 
structures. Instead of having a pre-defined grammar or reactive musical score, our goal 
is to use the interplay between artifacts and humans to produce new musical structures.  



 

In other words, sonic structures emerge as result of the continuous interaction with a 
dynamic environment; we call this approach "Real World Composition (RWC)".  

Starting with the Roboser experience, the Visual Roboser, reported here, emphasizes the 
exploration of image complexity as a source for emergent sonic structures.  We describe 
how Roboser’s capacities -have been extended in the direction of transforming complex 
and dynamic sensory data, such as real-time video data, into sounds. In this paper we 
concentrate on the potential of the Java imaging-processing model to support real-time 
synthetic composition. In particular we investigate whether Java can support the real-
time requirements of the RoBoser system. We will describe the system architecture, the 
current status of the project, as well as the difficulties that we have identified in this 
approach, and finally we present the future development. Our results show that although 
the Java2 implementation is not able to fully support real-time processing it can meet 
the requirements set by the RoBoser architecture. 

2. System Architecture 
Visual Roboser uses an architecture with two processing levels: a) the neural computing 
module (NCM) and b) the Java processing module (JPM). The Java level is sub-divided 
into two components: image processing and sound production as shown in Figure 1. 

 

Figure 1. Visual Roboser's system architecture. A Java image processing agent presents 
high-level image properties to a neuronal simulator, IQR421. The states of the neuronal 
control system are subsequently projected onto a Java composition agent. 

The neural simulator used is IQR421, simulating in the current implementation a static 
network. This networks associates each pixel from one image (frame) to a single cell, 
which means for the moment for a frame of 50x50 pixels that 5 populations of 2500 
cells are activated representing the color channels (Red, Green, Blue, Yellow) and 
Luminance. The JPM image-processing component is responsible for acquiring the 
images and extracting specific parameters such as color, motion information, and 
luminance. We extract the colors channels (RGB) and luminance of each pixel and 
send, during the system performance, these values to IQR using a shared memory 
interface in C. In the NCN each color population is static and their associate fixed 
weights feed activation to a “voice” population. These populations control the note 
production. In this setup a total of 25000 cells are mapped linearly to 128 values (the 
MIDI scale). A winner-take-all mechanism ensures that only the most active cell in 
every cycle can trigger a sound. Figure 2 shows the current circuit modeled in IQR421. 



 

 

Figure 2: circuit modeled in IQR for sound control and production. 

The JPM sound production uses the Java Sound implementation (available since Java 
1.3) to generate MIDI in real-time using a custom developed sound toolbox (Costa & 
Manzolli 2001). Again the link between IQR and this Java module is accomplished 
using native shared memory code. Several populations control the sound generation 
module; some of these are show in Figure 2, (rhythm, velocity, duration and Tempo). 
The “control” population plays a special role. As the name says, it controls the behavior 
of the Java Sound module by using special cells, where any activity above zero activates 
a special function. These functions include, enabling/disabling the module and changing 
notes, velocity and rhythm from “winner takes all logic” (WTA) to “threshold logic” 
(Th) (see Bernardet et all 2002, for details). 

3. Project Status 
In the current implementation a sequence of movie frames is used to extract the 
following features: color channels (RGB), luminance, and local and global motion. 
These feed in a neural simulation in IQR where the connections are static and 
predefined at this stage of research. Our result shows that this approach allows for the 
real-time transformation of image features into a complex musical composition, in the 
current status, the system generates a sequence of notes according to the pixel activity in 
the image, as expected by the neural model. 

The main difficulties have been the real time constrains. It's difficult to match Java with 
real time. There is a proposal for a real time specification for Java (http://www.rtj.org/ 
and an implementation from Timesys but it supports only java 1.2. We are still using 
recorded images as frames because the pure Java Version of JMF (Java Media 
Framework) from sun doesn't support live video capture. 

 

4. Results 

We have built two different implementations using a fixed weight network. The first one 
animates a 50x50 pixels frame sequence using a “by hand” thread scheduling 
(thread.sleep), in other words a frame in the sequence is changed every time the thread 
wakes up. The second version uses 110x110 images, and the java.swing.Timer class for 



 

image scheduling. Both versions use the new VolatileImage class (available since Java 
1.4) for fast off screen drawing. The frame rate was set to 40 frames per second (which 
means 1 frame each 25ms). 

All the measurements are made on a Pentium IV, (1.6Ghz, 1Gb of DDR memory of 
266Mhz and Nvidia GeForce 2 MX DDR video card) running SuSE linux 8.0, and java 
1.4.1_02 where all classes are compiled with optimization flag). 

We measured the time expended in the image processing stage, in other words the 
process of reading one frame, extracting the color channel information and sending the 
data to IQR. Here we want to evaluate the system performance potential for being used 
in real time applications. Results for both implementations are show in table 1. 

Table 1: elapsed time in image extraction for different module implementations 
 Start Warm up 1 (1mim) Warm up 2 (3mim)
Version 1 26ms 6,7ms 5,6ms 
Version 2 20ms 6,7ms 4,6ms 

The “start” time is the time elapsed only a few seconds after the module has started, and 
“warm up” times are the measurements obtained after the java virtual machine has 
found the module “hot-spots” and compiled them to native code. We can see by these 
results that all image extraction takes much less then 25ms, the time required for a new 
frame to be processed. 

The table 2 shows the time required to draw the image on the screen for 
visualization proposesTable 2: elapsed time in image drawing only 

 Start Warm up 1 (1mim) Warm up 2 (3mim)
Version 1 1,2ms 1,2ms 0,1ms 

Version 2 1,2ms 0,1ms 0,1ms 

Here we see that the time spent in drawing (animating) the frames is very small (some 
times less than 1ms). These results show that the application is acceptable for real-time 
requirements witch leaves about 20ms for neural processing in IQR. 

 

5. Conclusion and Future Work 
The next steps will be to enhance the image features extraction and test the system with 
MPEG sequences, as well as to change the network to use dynamic and learned neural 
weights. This will be done using Distributed Adaptive Control (DAC) (see Verschure & 
Voegtlin, 1998) to change the weights. In principle we will have colors channels, 
motion, and luminance going to the DAC process. In addition we are experimenting 
with live video material and other sensory modalities such as sound and touch. 

We have implemented only a reactive musical mapping as described in the neural 
model. The next steps in this project will be to: 

a) Evaluate the system real-time performance for a more complex neural 
simulation, including the DAC methodology. 



 

b) Enhance the sonic control using several image features as a stimulus for the 
sound model. 

c) Compare the musical results of the implemented reactive model with the next 
one. 

One of the most important musical development will be to adapt neural configuration to 
musical composition strategies. One possibility for musical construction we are 
evaluating now is to use the logic for note generation described in section 2. We can see 
that the WAT mode will lead to trajectories of individual note events. On the other hand 
using the Th strategy, the system can generate a great number of simultaneous notes that 
can be understood as an extension of the concept of voice within sound layers. In this 
case the system will be generating a “cloud of notes”. Actually, the necessary classes 
are been designed to test this hypothesis. 

On the other hand, we can see Visual RoBoser as one further step in the application of 
the RoBoser framework for interactive real-world composition. The results presented 
here shows that this development is critically dependent on the availability of robust 
real-time processing techniques. Our results show that the Java2 environment is not yet 
fully mature in this respect. Despite these technical problems at the level of single 
modulus the overall distributed architecture behind RoBoser is robust and appropriate 
for the construction of RWC systems. 
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