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Abstract

In this paper some preliminary formulations for the simulation and design
of critical listening rooms using optimization techniques aiming at nearly flat
frequency response are discussed. Emphasis is given to the computation of
an approximation of frequency response as a function of the design variables,
i.e. without directly measuring this response in a real room or a scale model.
Optimization models for room design are given, which take into account a
range of listening positions (e.g. an audience) and sound sources (e.g. a stage).
Some implementation issues are pointed out and further research directions
are laid out.

1 Introduction

The design of critical listening rooms (e.g. project studios, small concert halls, home
theaters) is a problem which poses important questions before it can be defined: in
the first place the question of what exactly is to be designed; secondly, what is it at
which the design aims.

To simplify discussion a cuboid room is assumed, though much of the material
may be adapted to polyhedral rooms (described by a finite number of planes). The
main design variables considered here are the room dimensions and reflection coeffi-
cients of the surfaces (walls, floor, ceiling), where ranges of possible room dimensions,
reflection coefficients and positions of sound sources and listeners are given. It is
assumed that sound is originated in any of the possible sound source positions (as
in a stage) and may be received /perceived in any of the listening positions (as in an
audience): no optimal placement of listeners or sound sources is sought after.

The main goal is to obtain a nearly flat frequency response over the range of pos-
sible source and listener positions, where “nearly flat” presupposes the minimization
of some measure of deviation from flatness, such as the standard deviation or least-
squares errors of the frequency response averaged over source-listener pairs, or the
supremum of such values over source-listener pairs. The preference of least-squares
error over standard deviation is indicative of the fact that an affine frequency re-
sponse can be lossless electronically equalized to a flat (horizontal) response and so
is practically as good as a flat response (at least in the studio setting).

There are two major concerns in this project. The first one is to have robust
models and prediction tools that may be used in simulation without need of directly
measuring acoustic data in a real room or a scale model. This is clearly a sine qua
non condition for the automatic search for an optimal project. The other concern
is to have open formulations and algorithms, in the sense of providing detailed



descriptions of the optimization models and methods, as in [lazzetta, Kon & Silva
2001]. An implicit risk is taken of repeating methods and formulations that may be
found elsewhere (e.g. [Rindel 1997, Rindel 2000, D’Antonio & Cox 1997, Warusfel
1995]), but not explicitly enough to be readily implemented.

The next section analyses the computation of an approximation of frequency
response as a function of the design variables, taking into account such effects as
source-boundary interference (in particular modal coupling and comb filtering) and
other amplification/damping effects due to first reflections. Section 3 treats the
optimization models and available methods for solving them. Other possible design
variables and quality criteria are later discussed as further research topics. As stated
in the first line of the abstract this is a preliminary work, and so much of the
description of methods and required computational tests are not yet finished at the
time of writing.

2 Approximating Frequency Response

In this section some of the main phenomena that imply amplification or damping
of specific frequencies in a room are considered. For each type of phenomenon the
special case of specular reflection is considered first, and some discussion on the
effect of diffusion follows. See [Beranek 1962, Beraneck 1993] for more information
on the general acoustical problem of reflection and diffusion in rooms.

2.1 Modal Coupling

Modal coupling is a result of the interaction of the sound source and the reflective
surfaces of a room. It is associated with closed specular-reflection paths (loops)
whose lengths are multiples of the wavelength considered. It affects mainly those
listening positions that lie within the closed paths, though diffusion may blur this
effect to adjacent positions.

According to how many surfaces the corresponding closed path hits, room modes
are called axial, tangential and oblique. These are related with having one, two or

three non-zero values of n in the formula f(n,,n,, n,) = g\/(z_;;)? L (%)2 N (%)2,

where f is the frequency, c is the speed of sound and the room dimensions are L.,
L, and L,.
Axial modes are the easiest to calculate and to locate its corresponding nodes
(where vibration is damped). Considering n, = n, = 0 in the above formula, axial
cn

modes parallel to the x dimension have frequencies given by f,, = 57~ and nodes

located in the positions d(n) = {% | k odd, k< 2n}. Assuming the reflection
coefficients of both surfaces involved to be the same and equal to o € (0,1) for a
given frequency f(n), the amplification factor at the antinodes, which occur at the

positions a(n) = {2%;” | k even, k < 2n}, can be computed as 1+ o+ 0*> +--- = flg’

whereas the damping factor at the nodes can be computed as 1 —p+0? — 0> +--- =
1—p
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Tangential modes involve four reflecting surfaces in the room. The simplest ones
correspond to simple parallelograms hitting each surface once. These can be easily



shown to have their sides parallel to each diagonal of a square orthogonal to the
surfaces involved. More complicate paths correspond to folded parallelograms of a
virtual room consisting of specular copies of the original room, as indicated in the
sketch below. The letter N and A denote nodes and antinodes, respectively.
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It can be easily checked that closed paths corresponding to oblique modes
can be obtained by starting at the sound source and following the direction
(ngLy,nyLy,n,L,), where n,, n,,n, are natural numbers.

It is assumed that the sound source is located in the paths, so that in the first
sketch the source is at the intersection of the three modes. The amplifying and
damping factor for these modes can be easily calculated by using the appropriate
reflection coefficients; the tangential mode in the first sketch for instance would have
an amplification of m at the antinodes. Clearly the more surfaces the closed
path hits, the smaller the influence of that particular room mode in amplification
and damping.

It is important to note that the above examples are oversimplifications for the
case of pure specular reflections. Due to diffusion, modal coupling effects will be
perceived in regions containing these nodes and antinodes, the intensity of the effect
lessening with the distance to the geometrical location of the node or antinode.
Also notice that all reflection coefficients are frequency-related, usually decreasing
as frequency increases.

With that in mind, one could approximate the effect of room modes given par-
ticular source and listener positions by generating paths leaving the source in the
directions (n; Ly, nyLy,,n.L,) for n,,n,, n, small, and for each path that comes suf-
ficiently close to the listener calculate the corresponding frequencies and amplifica-
tion or damping factors. The approximate frequency response (with respect to room
modes alone) is given by the obtained values, considering frequencies in between to
have value 1 (no amplification or damping due to modal coupling).

2.2 Comb Filtering

The term comb filtering is applied to a particular type of source-boundary interfer-
ence corresponding to the superposition of the direct sound and the first reflection
on a nearby wall. Letting d be the distance of the source to the wall, the frequencies
f="%for k=1,2,... would display a pattern of amplification (with factor 1+ o(f))
and damping (with factor 1 — o(f)) due to the first reflection. Amplification points
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occur on the reflection point on the wall and every 37 (units of length) on the line
joining the source and the reflection point; damping is observed at the midpoints on
the same line.

Also the distance from the listener to a nearby wall would impinge on the listener
a comb filtering effect due to the interference of the direct sound and the sound
reflected on the wall behind his/her head. Patterns of amplification and damping
would be the same as in the source-wall case.

2.3 Source-Boundary Interference and Ray Tracing

More generally speaking, it is relatively easy to consider all early reflections (up to
a certain order) that reach the listener from a particular sound source. This can
be achieved by considering virtual images of the sound source in “virtual adjacent
rooms”, and tracing the direct path from the virtual sound source to the listener,
multiplying the response factor by the reflection coefficient o of each (virtual) wall
this path traverses for a given frequency [D’Antonio & Cox 1997, Rindel 2000]. If
the (direct) distance from the sound source to the listener is d and the distance from
the virtual sound source 7 to the listener is d;, the response (amplification/damping)
factor due to phase difference is r; = 0" cos ((dl — d)?) where n is the number of
traversed walls; by considering a set I of virtual sound sources, the corresponding
response factor would be r =14 Y, 7;.

s ]. »

dl ’dz

b d
d “‘-f.if
. g3
S e

This approach is closely related to the ray tracing method [Schroeder 1978,
D’Antonio & Cox 1997, Rindel 2000], with the difference that by using virtual images
no ray is actually generated that never reaches the listener. It should be noticed that
this “virtual ray tracing” technique is able to cope with modal coupling and comb
filtering effects as well. Nevertheless, since these effects might be perceived over a
range of listening positions whereas the ray-tracing takes a single listening position
into account, computer power can be spared in treating modal coupling and comb
filtering effects separately.

2.4 Combining results

Once approximate frequency response factors have been calculated for each isolate
phenomenon (modal coupling, comb filtering and other source-boundary interfer-
ence), a natural way to combine these results is to multiply response factors for
the same frequency. This is to be made over a finite set of frequencies including
those involved in modal coupling and comb filtering, as well as selected frequen-
cies in between. Having obtained the values for these isolate frequencies, one could
easily calculate a polynomial interpolation to obtain an estimation of the frequency
response.
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3 Multi-source/listener Optimization Models

Let r(s,l,d) be the approximate response factor as function of the source (s) and
listener (1) positions and a description (d) of the room (comprising room dimensions
and reflection coefficients). This function might be represented by a vector indexed
by a finite set of frequencies F.

An error function is needed to measure deviation from flatness. Let 7(s,(,d)
be the least-squares approximation of r(s,l,d), i.e. the result of the linear regres-
sion problem applied to the values of the vector r(s,[,d). Let e(s,l,d) be an error
measurement function for the deviation of the response r(s,[,d) from the affine
response 7(s,l,d). Natural choices for this function are the li-error ei(s,l,d) =
Yper|rp(s,l,d) —7¢(s,1,d)|, the quadratic residue ey(s,l,d) = X jcr(rs(s,l,d)—
7r(s,1,d))? and the loo-error eoo(s, 1, d) = maxer |ry(s,1,d) — 7s(s,1,d)].

Suppose the range of possible source positions is described by a set S (stage) and
the range of possible listener positions is described by a set A (audience). These
might be assumed to be polyhedra for the sake of simplicity. Let D describe the
constraints on the description of the room. This description will typically involve
box constraints (i.e. maximal and minimal values) on the dimensions, and a finite
set of possible values for reflection coefficients (as related to available materials).

One approach for the optimization model is to ask that the frequency response be
optimal in the average case, i.e. in an average source-listener pair. This corresponds

to .
1I111L fsES fleA 6(5, l? d)
subject to d € D.

The integrals on the problem above might be computed approximately, i.e. as sums
over a finite number of pairs (s, ().

Another possibility is trying to guarantee that the worst possible combination
of source and listener positions will have the best possible frequency response with
respect to the chosen measure of deviation from flatness. This corresponds to

min SUP,cg, 1ea €(5,1,d)
subject to d € D.

The solution algorithms for these problems will have to tackle the following
difficulties: lack of a closed formula for the objective function (it depends on a simu-
lation); no convexity-like properties in the objective function; mixing of continuous
and discrete variables leading to a combinatorial behavior. The most likely outcome
is the derivation and implementation of a global optimization heuristic method tai-
lored for the structure of the problem, with techniques like those in [Horst & Pardalos
1995].



4 Conclusions and Further Research

This paper describes optimization models for the design of critical listening rooms
aiming at a nearly flat frequency response. Various design options and corresponding
optimization models have been presented.

Many of the difficulties of computing frequency response without physical mea-
surements have been discussed, and an implementation of an approximate frequency
response function based on identifying modal nodes and comb filters and using the
virtual ray tracing model has been proposed. Plenty of computational tests and
comparison to real values obtained by direct measuring are still required in order
to verify the adequacy of the proposed procedure for the purposes of optimal room
design.

Next comes the study of the mathematical structure of the functions r(s,,d)
and e(s,l,d) and their relations to the Stage and Audience sets, in order to min-
imize the computer time involved in the calculations of the objective functions
Jses Jieae(s,1,d) and sup,cg jc4€(s,1,d), as well as efficient ways of improving the
design variable d.

Finally, the completed implementation is intended to be openly available under
a GPL-type public license.
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