
Oficina Granular: a tool for composing with granular
synthesis

Carlos Eduardo Mello
melloedu@unb.br, Depto de Música, Universidade de Brasília

Abstract. This article describes a software project called Oficina Granular
(OG). OG attempts to provide composers with an intuitive software interface
for creating and assembling granular sound masses into a complete musical
composition. Studies and software implementation of granular synthesis tend
to concentrate on grain generation. OG uses a simple grain implementation
and focuses on higher level manipulation of sound masses. The main libraries
for OG were written in standard C++. The Graphical Interface was planned
for Mac OS X and is currently under development.

1. Introduction
The idea of utilizing granular components to produce complex sounds is not new.
Several studies and implementations have spawned among computer music researchers
in recent decades. Many articles, like those of Roads (1985, 1988) and Truax (1988,
1994), have helped bring to light the possibilities and limitations of this kind of
synthesis technique. Many of these works have focused on the possibilities of the
resulting sounds and their spectra. Others provide examples of specific
implementations and their particular strategies for controlling grain generation. Jones
and Parks (1988) discuss two methods for working with grains: extracting them through
the granulation of natural sounds and synthesizing them with frequency modulation.
Truax (1988) reports an implementation of real time granular synthesis using a
dedicated DSP microprocessor. Behles, Starke and Röbel (1998) propose a combination
of various methods of granular synthesis, including techniques developed in speech-
processing research, into one program.

Despite the great interest generated by a granular model of sound, the large
amount of computational resources required has imposed, in the past, substantial
limitations to the widespread use of this kind of technique. Roads (1985) reports that
his early experiments with granular synthesis involved specifying parameters for each
of hundreds of grains in punched cards, which were then processed by a large
computer. Also, the complexity involved in the studies about the subject have often kept
granular synthesis techniques away from the grasp of musicians who do not have
previous training in computer sciences. Recent developments in the computer industry,
however, have permitted the average musician to access sophisticated sound synthesis
software.

The software described in the present article, Oficina Granular, was intended to
bring granular synthesis closer to the ‘non-engineering’ musician. The idea was to
provide composers with a tool for manipulating granular sound masses, without the
need to write a complete computer program. The software was initially designed around
the end of 1999. Its current implementation, a test version for standard C++ console
(OG - console v1.0), was concluded in 2002. Instead of discussing this test console

program, a transitional version, this article describes the program’s main library (see
Implementation) and the main features of the Graphical User Interface, which is
currently being developed (see Future Work: Interface).

2. Implementation
Oficina Granular is constructed around three main building blocks: events, envelopes
and compositions. Each one of these parts has a corresponding class in a C++ library
and contributes to build a virtual machine, which is the logical center of the program.
The following sections describe this library and its components. User interaction with
this virtual machine is provided through the Graphical User Interface described in the
last section of this paper.

Events

Events are the main musical units of Oficina Granular. Each event object stores
information about a single sound mass, which may be used to create a long and
evolving sound or a note in a more traditional sense. In either case, the event describes
all the parameters involved in the creation of sound grains. This model is closely related
to Roads’ implementation (1978), in the sense that the grains are generated linearly, and
distributed in time according to a specific rate of succession. In OG, the grains are
synthesized sounds, which have a fixed wave form (sinusoid) and whose frequencies
are randomly picked from within a limited bandwidth. Because of the massive amounts
of grain data used in the program, the actual grains are created only at build time. Every
new build produces a new set of (pseudo) randomly chosen grains, according to
currently assigned parameters.

Event parameters are defined as follows: 1. start time; 2. duration; 3. grain rate; 4.
grain size; 5. base frequency; 6. band; 7. amplitude; 8. balance (pan). The start time of an
event is used to insert the event in the composition’s time-line. When the grains are
generated, each one has its own starting point which is referenced to its containing
event’s start time. This facilitates moving the event in time. The duration parameter is
the total length of the event. Grain size and grain rate are applied to every grain in the
event object. These parameters describe, respectively, the duration of individual grains
and the rate at which the grains are started. The base frequency and band parameters
are used to determine an interval from which to choose a grain’s frequency content.
Band values may be linear -- in which case they merely describe a specific frequency
boundary -- or proportional to the base frequency. This last feature is useful for setting
frequency intervals in a more musical way (e.g.: 4 = 2 octaves). Although the base
frequency usually represents a lower bound for frequency choice, this assignment is
completely arbitrary; in other words, these boundaries may cross at any time. The
amplitude of the event is the maximum amplitude of each grain at any given moment.
The actual perceived volume for a sound mass can vary with density changes. In the
beginning of an event, for instance, an attack (ramp) effect is usually noticed if the
grains are allowed to overlap. Finally, every grain in an event may be ‘spatially placed’
according to a pan value, which distributes its signal between a left and a right channel.

Event objects use the Build() function to generate all grain data. This is a
central method, which creates the grains by checking the parameters at a given time,
depending on the grain rate of succession. Since the grain rate may be variable,

Build()checks it before writing each grain. This way, the starting point for each grain
will be directly affected by changes in the desired density (grainOffset =
1/grainRate) Changes in this and in all other parameters are verified by internal
function calls, which calculate the new values based on the start time of the next grain.

Envelopes

This section describes the strategy utilized by Oficina Granular to provide dynamic
changes to event parameters. Each one of the parameters described above may be
defined by a fixed value (static) or according to an assigned envelope (dynamic). The
term envelope is used in Oficina Granular, in a rather generic way, to describe an array
of values, which combined together create a discrete curve. The values in this curve are
used as control points for the Build() function. Envelopes may be applied to any given
parameter, including the grain rate of succession. This gives the events the flexibility to
behave as either a static block or a constantly evolving sound. Although each event
stores its own envelopes locally, a separate class of envelope objects is also provided.
This way the composer may modify and reuse previous envelope data; also, envelope
objects can be used as a storage units for data generated by graphics tools

The envelope class stores the value points for the envelope and a few other
information fields such as its name, type and size. As in the case of events, the names
are optional descriptors; the type of an envelope defines whether it is used to store
integers (16 bit) or floating point values; the size field stores the length of the sequence
of values in a 32 bit integer. This length value determines the resolution of the
envelope. However, when the event is applied to specific synthesis parameters, the
amount of time each control value is in effect depends on the duration of the event. For
instance, an envelope with 25 values used in an event which lasts for 1 second, has 40
miliseconds between each control point. For an event of 5 seconds, this same envelope
will have 200 ms between values.

Composition
As mentioned above, one of the main goals of Oficina Granular is to provide the
composer with useful editing features to manipulate granular synthesis data. This is
done by encapsulating the configurations for a sound mass in the event unit. The
composer can then create as many events as he/she wishes and modify them as needed.
In order to assemble all the events and store user defined envelopes, OG implements a
composition class. Each composition stands as a unit, assigned to a file which can be
loaded from and written to disk. The composition methods include functions for
handling file input and output, controlling the lists of events and envelopes, and
providing the editing APIs for the graphical interface.

Besides being able to alter the synthesis parameters (grain rate, frequency band,
etc.), the composer can edit the events inside a composition in the following ways:
removing an event, duplicating an event, moving an event in time, transposing an
event’s base frequency and creating a melodic line with a given event’s definitions.
When an event is created, it is inserted in the composition’s list of events. The program
gives it a new location in the time line by simply assigning it a new start time. Other
features like event duplication are achieved internally by copying event objects. Since

grain data is calculated only when needed, there is very little memory overhead
involved in copying events during edit operations. This way, a composition can receive
and pass events as parameters to its own methods and to communicate with the
interface. Melodic lines can be created through a series of events with similar
configurations, each bearing a different base frequency value. This works best when
band values are kept static and proportional. Instead of duplicating each event
manually, the composition class provides a specific API for this, which takes an event
ID and a melodic sequence as parameters.

Rendering

At any time during the editing process, the composer may review the results of the
composition. This may be done for individual events or for the entire work. The
realization of the composition, here referred to as rendering, involves calling an event’s
Build() method to generate a list of grain data according to the event’s parameters.
When rendering all the events, the composition methods go through the event list and
call the Build() method on each one. The final output of an event or composition
rendering is handled in two different ways:

1. Sound - this method is currently under development. It consists of creating a
built-in sound engine for the grains, which will produce either a final sound file in
standard format (AIFF, WAV) or mix the grains and feed them to the computer’s sound
card, or both.

2. Csound File format - this method has been implemented in the current version
of OG. The sequence of events is written to a Csound score file (.sco), so that each
grain becomes a note line. OG also generates a Csound orchestra file (.orc). containing
the definition of an instrument which ultimately plays the grains.

3. Future Work: Interface
In order to achieve the goals set for this implementation of granular synthesis, it is
fundamental to provide the composer with control over all features of the program,
through an easy-to-use, intuitive and effective user interface. Oficina Granular
addresses this issue by coupling the class library previously described with a standard
graphical interface designed for Mac OS X.

Windows

The working environment for Oficina Granular revolves around three main windows,
which address the issues of event parameter control, envelope editing, and time-line
assembling of granular sound masses (Figure 3). The main editing window in Oficina
Granular is the Composition Screen. Every event in the composition is displayed in it,
in the form of graphical shapes of different colors; each shape outlining the frequency
boundaries for a specific event.

One of the difficulties encountered with the console version of Oficina Granular
was the large amount of typing required to assign each event parameter, monitor its
effect on the event and make new changes. The Event Editor window allows the
composer to set all parameters in a single dialog box, change the parameters at any
time, apply the changes and monitor them. Another problem with the text interface was
assigning values for parameter envelopes. This became very cumbersome when dealing

with envelopes of resolution higher than a dozen values. In these cases, the composer
would have to type all the values at the prompt, or pre-type them into a file for loading.
The graphical interface deals with this by providing an Envelope Editor window, in
which the composer will be able to ‘draw’ the envelope’s curve, either with free mouse
movements or by applying drawing tools. Two other windows complete the working
environment for Oficina Granular: the Event List and the Envelope List. These show
the objects created in the current composition, arranged by name, by start time (events),
or in the order they were created.

User Interaction

The user of Oficina Granular interacts with the program’s Graphical Interface by
creating and editing events, designing envelopes for event parameters and rendering the
composition (or part of it). The first step in using the program is to create a new
composition, using the appropriate command in the file menu. The program then
presents a blank Composition Screen, which indicates time on its horizontal ruler and
frequency on its vertical ruler. At this point, the composer may create a new event by
‘double-clicking’ at the desired point in the time line, or by issuing the corresponding
command in the Composition menu. These actions open up the Event Editor window
so that the user can choose the parameter configuration for the newly created sound
mass. Once in the Event Editor, each parameter can be set in one of two ways: (a)
moving the slider control or typing a specific number in the text field - for static values;
(b) clicking the Edit button to create or load an envelope - for dynamic values. Finally,
clicking the Apply button stores all the new values in the current event an closes the
Event Editor.

Existing events are displayed in the Composition Screen and in the Event List
window. These two windows are linked together, so that any changes in one are
immediately reflected in the other. Moving an event in time is accomplished by
dragging the corresponding shape along the Composition Screen’s time axis. If the
Event List is opened and ordered by start time, the user sees the event item move to
another position in the list. Moving an event’s shape along the vertical axis translates
into changes in the base frequency parameter for the event being moved. If base
frequency is set to dynamic mode, the reference is taken from the first value in its
envelope. The remaining values are transposed accordingly. The user can duplicate an
event by selecting it in the Event List and calling the Duplicate Event command in the
Edit menu. He/she may accomplish the same result by ‘option-dragging’ the event’s
shape in the Composition Screen. This alternative permits the user to create and relocate
the new event to another position in time, all in one movement. To open the event and
edit its contents, the user ‘double-clicks’ its shape.

The Envelope Editor is summoned each time the user clicks the Edit button
for a parameter or an item in the Envelope List window. Once opened, The Envelope
Editor allows the user to: create a new envelope; load an existing envelope; change an
envelope’s resolution; modify an envelope’s curve; save an envelope with a different
name. All this is handled by clicking a button, using a menu command or, in the case of
editing the envelope’s values, by dragging the mouse across the Editor’s window. This

last action set’s the values according to the vertical position of the cursor. Value ranges
in the Envelope Editor’s vertical ruler vary according to the type of envelope.

Fig. 1 - Graphical User Interface

References
Behles, Gerhard, Sascha Starke, and Axel Röbel. “Quasi-Synchronous and Pitch-

Synchronous Granular Sound Processing with Stampede II”. Computer Music
Journal, Vol. 12, No. 2, Summer 1988.

Jones, Douglas & Thomas W. Parks. “Generation and Combination of Grains for Music
Synthesis.” Computer Music Journal, Vol. 12, No. 2, Summer 1988.

Roads, Curtis. Introduction to Granular Synthesis. Computer Music Journal, Vol. 12,
No. 2, Summer 1988.

Roads, Curtis and J. Strawn. “Granular Synthesis of Sound” in Foundations of
Computer Music. Cambridge Massachusetts: MIT Press, 1985, pp. 146-159.

Truax, Berry. Real-Time Granular Synthesis with a digital Signal Processor. Computer
Music Journal, Vol. 12, No. 2, Summer 1988. Computer Music Journal, Vol. 12,
No. 2, Summer 1988.

