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Abstract. After the generation of a sample of musical compositions, the rules which gave
birth to these groups of compositions have been codified into a genetic code and these
families, which had the capability of adapting to the environment and to reproduce themselves
have been selected. The fitness the authors were in search for was about musical consonance.
In this paper we present some results which could prove interesting in defining
consonance/dissonance, operated automatically on musical compositions.
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Introduction

The common thesis in Artificial Life models is the idea that complex structure can emerge
from the repeated application of a limited set of simple operations and give birth to emergent
properties (Langton, 1997). When applied in a musical context, one of the major goal of these
models is to find the optimum method for structuring musical compositions (Miranda, 1999).
This relationship, between music and some AL models, furnishes a semiotic triangle of
signification (or musification). In this triangle, mathematical structures, the codification
system we can use and various kinds of representations let us obtain artificial artefacts of a
different kind, according to the codification systems we have chosen (Bilotta et al., 2000).
There are two important directions in which we are going in exploring the musical context.
The first is a scientific experimentation on the kind of artefacts we can obtain in order to
detect a musical theory that can be utilised to write new kind of compositions. In fact, while
some parts of the crafts of counterpoint, orchestration and construction of melodies are often
codified into explicit rules, others are not. Erickson (1982) has argued that: "We need a music
theory that is not style bound, that is valid for world music, not its European, Chinese or
Indonesia varieties". This lack is especially evident in the context of evolutionary music.
Composers are used to search the space of musical constructs to find just the right choice for a
particular moment in a piece or they rely on some historical style in order to obtain a
particular musical effect or taste. This research is multifold: we are exploring the
mathematical, psychological and semiotic aspects of music.
The second direction concerns musical fitness, which can give us some global characteristics
of a melody. In evolutionary music, musical fitness (like visual one, Sims, 1993) is generally
operated intuitively by listeners. It reflects an aesthetic judgement according to which some
pieces, in a population of compositions, are better or worse, based on subjective, emotional or
perceptual criteria, expressed by a listener's sample. Some authors have detected it as the
source for a digital instrument (Takala, 1993), generating a single rhythm measure (Horowitz,
1994), evolving an "ear" module (Jacob, 1995), building up a knowledge base of melodic
ideas for use in improvising jazz solos (Biles, 1994), training a neural net to discriminate
fitness (Biles et al., 1996).
We have used a genetic algorithm to investigate musical fitness on consonance. We have
generated a sample of musical compositions. The rules which give birth to these groups of



compositions have been codified into a genetic code and we have selected those families,
which had the capability of adapting to the environment and of reproducing themselves
(fitness) (Mitchell, 1996). The fitness we were in search of was about musical consonance. In
fact, we computed the consonance and dissonance values between two notes in a melody
(forgetting for a moment the discussion between tonal and a-tonal music). The offspring
generations, created by some genes random mutation, have been selected according to their
fitness and the process has been repeated many times. After many generations, it has been
possible to observe an empowerment of some populations' fitness and of emergent properties
in melodic organisations. In this paper we present some results which could be of interest in
defining consonance/dissonance, operated automatically on musical compositions.

The opposition consonance/dissonance

What sort of information does sound convey? Human mental representations of acoustic
events can be elaborate in a way that the word sound doesn't offer. Sound refers indifferently
to the physical sound in the world and to the mental experience of it, so that
consonance/dissonance is related to physical-mathematical theories, to psychological
experiments on sound perception and to the musical organisation of sound. The problem of
consonance/dissonance in music began with the Pythagoreans in the fifth century B. C.  They
discovered that two notes produced by strings were consonant (which means they sounded
smooth together) when the ratios of the lengths of the strings were formed from low integers,
such as 2:1 (the octave), 3:2 (the fifth) and 4:3 (the fourth). In modern Physics, the rule has
been replaced to state that the most tonal combination involve simple ratio relationships
between frequencies. Von Helmoltz, a German physiologist and physicist in the XIXth
century, elaborated the best-accepted theory of consonance, which blames the roughness of
dissonant tones on the perception of beats.  Helmoltz argued that the auditory system resolves
complex tones or mixture of tones into individual spectral components (partials). When two
partials are too close in frequency for the auditory system to resolve them, it hears the beats
(periodic fluctuations of intensity) created by their summation.  To this theory has been added
the more recent theory of critical band, which is defined as a certain frequency separation,
within which partials are not fully resolved by the auditory system and then interact to
produce phenomena such as masking or beats.  The opposition consonance/dissonance is still
a problem, since the theories of atonal music and computer music have opened a broad range
of possibilities in creating musical compositions. While some authors consider consonance as
lacking in meaning (Schoenberg, 1984), some experiments show that the adult judgement
about consonance is well consolidated (Huron, 1991; Shellemberg and Trehub, 1994).
How can an auditory event be translated into a perceptual representation of it? When listeners
create a mental representation of the auditory input, they must employ rules about what
happens. Gestalt's principles of grouping were evolved by a group of German Psychologists in
the early part of the XXth century to explain why elements in sensorial experience seemed
highly connected to one another. The word Gestalt means "pattern" and the theory described
how the brain created mental patterns by forming connections between the elements. Gestalt
theorists argued that there was always competition between "the forces of attraction" of
elements, so that the perceptual organisation that emerges from this conflict would be a
consequence of the distribution of forces across the whole perceptual "field" and not of the
properties of individual parts taken in isolation. The Gestalt psychologists' view was that the
tendency to form perceptual organisations was innate and occurred automatically whenever
we perceived anything. It was impossible, they claimed, to perceive sensory elements without
their forming an organised whole. They argued that this organisational tendency was an
automatic tendency of the brain. In fact, some recent research shows that there is a biological



basis for consonance and that results show clearly that consonance and dissonance are
combinations of frequencies which produce different stimuli configurations in the neural net
disposed for the aural perception  (Zentner and Kagan, 1996, 1998).
What is the role of primitive organisation in music? Music builds elaborate structures of
sounds, but its aesthetic and perceptual comprehension is not the raw properties of the
individual sounds, as Gestalt Psychologists pointed out. It also builds upon structural concepts
such as scales, model and key relations and a variety of transformations, which include
transportation and repetition. Experienced listeners make use of a large number of musical
concepts or schemas in listening to music. Traditionally, music is thought of as having a
horizontal and a vertical dimension. This derives from musical notation in which the
horizontal dimension stands for time and the succession of sounds that forms the melody, and
a vertical one which depicts pitch relations, or the simultaneous sounds that form harmonies.
Usually, musicians speak of musical texture in referring to how these types of threads go
together, how strong the vertical dimensions are in comparison with the horizontal ones, how
the horizontal ones change over time, and so on.
Since we want to verify some of the emergent properties of AL models in the musical context,
we choose to work on consonance as a means of fitness. We are following the hypothesis that
evolution is present in music and it is possible to detect in this evolution emergent properties
and higher order organisation, which in some way resemble the historical evolution that has
produced musical systems, as we actually know it. What happens in evolutionary music?

A genetic algorithm for automatically searching for musical fitness

Let us consider a one-dimensional network of cellular automata. The automaton i can assume
value 1...1,0 −= Nxi . The evolution of the automaton's state in time t+1 depends on the

automaton’s and its neighbourhoods states at the time t. This is a deterministic system since
the evolution is fully predicted. For this reason, knowing the system's state at its start time,
we'll be able to calculate the system's state at every instant of time. For a one-dimensional
network of cellular automata, knowing a sequence of numbers ii cx =)0(  for ni ,...2,1= ,

which represents the automata values at the initial state, we can generate a numerical matrix,
that gives us the automata values at every instant of time:
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If we consider { }1,..,1,0 −= NP as the space of all possible automation values, a transition

rule becomes an application from hP  to P , where h is the automation’s neighbourhood
dimension. By supposing h=3, the single rule can be expressed as:
(2)  ),,( kjiijkijk pppss = ,

 with Ppx ∈  .

The evolution rules can be represented by the following sequence:
(3) kkkkbck ssssss ,.....,....,....,, 00200100000=ψ
We can consider the system's evolution rules as the network's genome.
Since, in the musical context, fitness is in correlation with musical composition, at this stage it
is necessary to speak about the musification process we have utilised. There are many



possibilities. The first is to correlate every column of the matrix to a note, choosing which of
them will be played simultaneously, and in which sequence. This could be done in the
following ways: to play just a note, in the horizontal (from left to right) and in the vertical
(from top to bottom) dimensions of the matrix; to play a triad; to simultaneously play every
note in a row. In the first condition, the automata’ values can coincide with the duration of the
note, while in the third condition we have chosen to realise a correspondence between the
matrix values of a row with the time at which a note has be played. The musification
mechanism that we have chosen, functions in this way: consider a row of the matrix and
select the automatons which have the same value; to these automatons will correspond some
notes which will be played contemporaneously (Bilotta et al., 2000). After having chosen the
musification mechanism, we can use the temperate diatonic scale to value the consonance
relations among the notes. If we approximate the relations among the frequencies to these of
the natural scale, we can construct a succession of numbers among 1 and 30 whose extremes
represent the values of minimum and maximum consonance between two notes. The other
values fluctuate between those two extremes. It's very important to note that the associated
value doesn't represent a consonance "measure" but rather that of the relative position of one
relation in respect of the other. Therefore we have constructed the following matrix:

 (4)

C C# D D# E F F# G G# A A# B
C 30 16 22 7 26 28 17 29 18 27 5 20
C# 16 30 14 22 25 13 28 11 29 24 27 23
D 22 14 30 16 21 12 6 28 17 10 4 27
D# 7 22 16 30 19 1 12 13 28 8 10 24
E 26 25 21 19 30 19 21 25 26 28 17 29
F 28 13 12 1 19 30 16 22 7 26 3 9
F# 17 28 6 12 21 16 30 14 22 25 26 15
G 19 11 28 13 25 22 14 30 16 27 2 26
G# 18 29 17 28 26 7 22 16 30 19 21 25
A 27 24 10 8 28 26 25 21 19 30 16 22
A# 5 27 4 10 17 3 26 2 21 16 30 14
B 20 23 27 24 29 9 15 26 25 22 14 30

We have picked out three classes in which it is possible to associate the pairs of notes to be
played together.
A: fifth major, fourth major and third major;
B: second major and seventh major;
C: every other we can realise;
D: unison.
We can evaluate fitness function stressing the consonance of class A and B, instead of those
which occur in the class C or D. For example, if some notes are played simultaneously, fitness
could be defined as follows:
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where  n is the column number of the matrix (1), and m is the number of the row; ija  is an

element of the matrix (1), ijc   is the weight to assign into the consonance's values of matrix

(4), according to the class they belong to; 1=ijkr  if 0)( ≠jxi  and 0)( ≠jxk , if not it is equal



to 0. If notes are played one at a time, fitness function is a little more complex than (5), since
one note is coupled only with that one that follows it, in the some row and not with all the
others. In the same way, if we consider a triad, every single note of every row will be coupled
only with the other two notes which follow it.

Some results

Let us suppose that the weights assigned to each family are:

(6)
Family A B C D
Weight 1000 500 -50 0

If we assign to random mutations a probability of 3% and consider many times the selection's
process, starting from different initial states, the process of evolution that goes on is
represented in the following diagram (figure 1). Let us analyse the diagram. Fitness curves
grow quickly, until they arrive at high values, where they become more stable. Only one
curve of fitness grows to lower values. In this case, it seems to us the system has arrived at a
local maximum.

Figure 1. Fitness functions for mutation rate equal to 3%

On the contrary, the system percentage of success, in arriving at the absolute maximum,
seems very good. In this case, considering a longer evolutive process doesn't give better
results. On the auditory level, if we analyse as results musical compositions, we can listen to
recursive melodies, based on a small quantity of notes (even if the musification process we
used is the result of the fusion and superimposition of more than one note). The fitness
function we have used lets the system continue in a recursive manner, and even from a very
simple system we can obtain complex compositions, where some emergent properties are
exhibited. In fact, the phenomenon has already been present for the first ten generations.
There are little variations in a composition that has a higher fitness (of the last generations)
and one of the first ten generations (with a lower range of fitness). The sharing characteristics
amongst different generations are genetically stronger and, for this reason, they are inherited
by the last generations. On the musical side, we are going to carry out experiments comparing
expert and non-expert listeners, to confirm the emergence of these proprieties.



Figure 2. Fitness functions for different percentage of mutation

If we augment the system's percentage of mutation from 1% to 20 %, we can see that at 1%
the fitness function doesn't grow. The system arrives at the highest values around 3%; while,
for higher percentage (4%, 5%, 10%, and 20%), results aren't better, since oscillations from
local maximum become greater (see Figure 2).
 These results don't change in a relevant manner even if we make a crossover at a point of the
genome, because the network is able, using the fitness function we have created, to arrive at
its best efficiency. To force the network means to let it leave its point of stability. The
network doesn't grow in efficiency with neighbourhood 5 or more than 5. On the contrary, it
seems unable to arrive at the absolute maximum, getting only relative values. The network
remains on lower fitness values if we change the weights (6), varying them as follows:

Family A B C D

Weight 500 100 -50 0

Figure 3. Fitness function with different weights.



We obtain the results, represented in Figure 3. Fitness grows relatively, the presence of
relative and absolute maximum continues to emerge, while the oscillations increase because
the system doesn't reinforce fitness as in the preceding situation.
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