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Abstract 

Expressive content of performed musical sounds involves the behavior of a wide range of 
parameters. Timbre dynamics can be responsible for much of the perceived expressiveness 
of long-note phrases played on wind and bowed instruments. In this paper, Principal 
Components Analysis (PCA) is used to represent dimensions of spectral dynamics, in order 
to reveal intentional expressive timbre changes within a gesture realization in a musical 
performance on the clarinet. Amplitude and frequency time-varying curves of the partials 
were measured. Spectral envelopes showed a high correlation both in frequency and time 
domain. PCA has been proved effective in identifying variation patterns in the spectral 
distribution. The PCA enabled data reduction and transformation making possible to build 
relations between the principal components and perceptual characteristics of sound. This 
approach seems to reveal important properties of these parameters that can possibly be 
characterized as “timbre variation”. Results showed that three principal components were 
enough to represent the “timbre variation” of the samples and the trajectories of these 
components elucidated some main characteristics of timbre development. 

Introduction 

The concept of timbre refers to the color or the quality of the sound and is defined by the ASA 
(American Standard Association) as “that attribute of the auditory sensation in terms of which 
a listener can judge that two sounds similarly presented and having the same loudness and 
pitch are dissimilar.” (Risset and Wessel, 1982). This vague definition of timbre is related to 
its inherent multidimensional nature. This sound attribute cannot be easily scaled, unlike 
intensity and pitch, of which different time-varying levels can be classified by a piano-forte or 
a low-high one-dimensional scale and therefore quantitatively expressed by the traditional 
music notation system. A musical timbre is commonly defined in terms of grouping all 
sounds produced by a single musical instrument, even though the quality of these sounds can 
be quite different according to its intensity, pitch or duration. Most research on timbre 
characterization has investigated with auditory perception of musical instruments (Luce, 
1963; Risset, 1991; McAdams e Bregman, 1979; McAdams, 1987; Gordon e Grey, 1977, 



1978; Grey, 1975, 1978; Barrière, 1991). In the late 60’s and in the 70’s, several research 
works in musical instrument analysis/synthesis methods demonstrated that the dynamic 
spectral energy distribution supplies the acoustic determinant for our perception of sound 
quality and therefore could be well represented by the time-varying amplitude and frequency 
functions of its partials (Risset, 1965, 1991; Risset and Mathews, 1969; Strong and Clark, 
1967; Gordon and Grey, 1977, 1978; Grey, 1975, 1978; Wessel, 1979). Strong e Clark used 
additive synthesis to construct wind instrument sounds, in which the amplitude of each partial 
was controlled by a single envelope. Later they used varying envelopes as a function of the 
partial frequency (Strong e Clark, 1967a e 1967b). Risset, 1965 analyzed individual trumpet 
sounds and obtained curves of amplitude and frequency for each partial. From the analyzed 
data he synthesized trumpet sounds using the MUSIC V synthesis system. Through auditory 
tests he was able to conclude that some characteristics of the trumpet timbre are more related 
to variations in the spectrum than to the spectrum structure itself (Risset, 1965). The 
motivation for these studies is certainly not limited to the purpose of duplicating these sounds 
electronically. Some of these authors have sought methods to measure and even to 
parameterize the timbre, in order to understand better how we hear the music produced with 
these instruments.  

Objectives of the Study 

Traditional acoustic instruments offer the possibility of producing and to accurately 
controlling a wide variety of timbres, depending on the pitch and on the way they are played. 
Most of the studies accomplished on timbre of musical instruments has been restricted to 
analyzing isolated musical notes, in general comparing sounds of different instruments, 
sampled outside any musical context, focusing the perceptual discrimination between 
instruments. Very little research was done in relation to the timbre variation across sounds 
produced by the same instrument or even along the duration of one single note. These 
variations are significant to the perceptive mechanisms responsible for the notion of 
expressiveness in a performed musical phrase. The present project intends to investigate the 
timbre variation of the clarinet along selected performed musical phrases. Instead of treating 
isolated and almost-static notes, this work seeks the meaning of physical parameters that 
might be responsible for the timbre variation along a musical performance. Although the 
current opinion is that the timbre of a musical instrument also depends upon the dynamic 
attributes in the sound attack, this study is focused on the time-varying spectral energy 
distribution during the sustained portion of the sound. 

Data Acquisition 

Selection of the Samples 

The selection of the analyzed samples tried to characterize timbristic aspects of the instrument 
and to include phrases with great expressive content, such as the melody played by the 
clarinet in the opening of the Clarinet Quintet op. 115 in B minor for clarinet and string 
quartet by Johannes Brahms. Phrase constructs and the score organization in this passage 
explores well the potentials of timbre differentiation of the clarinet. A good example is the F 
sharp played by the clarinet on the sixth measure, which had its duration triplicated in relation 
to the same note played by the violins five measures before, when this theme is stated for the 
first time. Dynamic marks (                                    ), the harmonic pulse and the fast ascending 



arpeggios by the cello in this passage indicate to the performer an accentuated dynamic 
variation of timbre and intensity (Loureiro, 1996). This specific note is used in this article to 
demonstrate the analysis methods utilized in this investigation. The Adagio of this Quintet 
also provided suitable passages for this study, as well as the Clarinet Quintet in A Major 
(KV. 588) by W. A. Mozart and the Grand Quintetto in B flat Major op. 34 by Karl Maria 
von Weber, both written for the same instrumentation. The samples were recorded at the 
studios of the School of Music of the Universidade Federal de Minas Gerais, performed by 
clarinetist Maurício Loureiro. 

Time-varying amplitude and frequency 

In this study, the signal is represented by its spectrogram, assuming that the sampled sound is 
perfectly harmonic and that an isolated note has only one well defined fundamental 
frequency. This deterministic analysis was done using a STFT (Short Time Fourier 
Transform) of 65536 points using a Hamming window of 2048 samples. The 2048 samples 
windowed signal was zero-padded. Each frame has an “instantaneous” resolution of about 45 
ms. A frame overlap of 1024 samples was used, increasing the overall time resolution to 
about 23 ms (1024 samples). 

The “instantaneous” frequency of each harmonic was obtained by peak detection of  the 
magnitude spectrum from the DFT (Discrete Fourier Transform). The use of a large DFT gave 
a frequency resolution of 0.67 Hertz. The effects of windowing and zero-padding in spectrum 
estimation are well explained in Masri et al., 1997. For each frame, the analysis algorithm 
calculated the magnitude peak, phase and frequency of the first 35 harmonics of the signals. 

Data simplification 

The magnitude curves of the spectrum showed small variations in short periods of time. 
Several researches try to validate simplification methods in order to smooth the spectrum. In 
general, these works drove to conclusions that small amplitude and frequency fluctuations are 
not noticeable and can be simplified by linear segments, making it possible to achieve a data 
compression from 20:1 to 50:1 without significant loss of information (Grey, 1975).  

The first data reduction was performed selecting the number of harmonics. Although the 
analysis calculated the first 35 harmonics of each signal, all partials with its log-magnitude 
peak 40 dB below the overall log-magnitude peak were discarded. After this spectrum 
reduction, a 6th order butterworth low-pass filter with cut-off frequency of 10 Hertz was used 
to smooth the magnitude curves (Beauchamp, J. and Horner, A. 1997). A bi-directional 
filtering was performed to avoid phase distortion. The signal reconstruction from these 
simplified data showed the little auditory significance of these variations and auditory tests 
were enough to validate this simplification. 

Analysis of the data 

Since the 60’s, Statistical Multivariate Analysis methods have been used in musical timbre 
research, towards the development of multidimensional scaling of timbre. Among them, the 
Principal Components Analysis (PCA), has been widely applied to a variety of perceptual 
data. The first experiences with PCA directly applied to physical parameters of sound were 
made in 1995 (Sandell and Martens, 1995; Charbonneau et al, 1997a, 1997b). In that study, 



PCA was applied to measurements of physical parameters, seeking their relationship with 
perceptual characteristics. 

Principal Components Analysis 

PCA is the optimum transform in terms of concentrating the most energy in the fewest 
transform coefficients, and is also known as Karhunen-Loeve Transform (KLT). In PCA, 
vectors of data are represented by linear combinations of orthonormal basis functions (or 
vectors). This basis is determined by the directions of maximum variance in the space defined 
by the vectors of data. It represents a change to a new system of coordinates, in which the 
“principal components” of a group of vectors are defined by their axes (Johnson & Wichern, 
1998; Rencher, 1995). Let ],,,[ 321 nxxxxX L=  be the data matrix. The covariance matrix 
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where nx  are sample vectors and µ  the estimated mean of the sample set. The principal 

components (PCs) are the components of a transform matrix U determined by the singular 
value decomposition (SVD) of XXC : 

t
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where S is a diagonal matrix whose non null elements are the eigenvalues of XXC and U is an 
unitary transform matrix whose columns are the normalized eigenvectors (unitary Euclidean 
norm) associated to the eigenvalues of XXC . The representation of X in PCs is given by: 

XUY t=   

and X can be recovered as: 

UYX =  

For compression and simplification purposes, it is possible to reconstruct the original data 
matrix using fewer PCs. The percentage of total variance of the signal “described” by a subset 
of PCs is given by the accumulated sum of the eigenvalues associated to the eigenvectors used 
in the reconstruction. 

Influence of scaling to PCA 

It is important to note that the way the PCA input data is scaled plays a relevant role on the 
analysis results. Linear scaled spectra (directly estimated values) have normally magnitude 
values within a range from 0 to 104. In this case, the lower partials present values about one 
hundred times greater than the upper partials. Consequently, any variation on the lower 



partials is much more important for the PCA. In other words, the PCA becomes more 
“interested in” reproducing the variations of  lower partials. For values logarithmically scaled 
(dB), therefore limited into a range of 80 dB, the spectral representation will be flattened. In 
this case upper partial variations will play a much more important role for the PCA 
estimation. Fig. 1 shows two PCAs performed in the same sound, using these two scales. 

 

Figure 1: The weights of the 1st PCA eigenvector for the cases of linear 
and logarithmic analysis of the same sound.  

Signal reconstruction from data obtained by PCA performed on log-magnitude spectra of 
sounds with noisy upper partials, such as notes from lower register from the clarinet, showed 
an unwanted vibrato in the lower partial. This results from the insertion of upper partial 
characteristics in the lower reconstructed partials. On the other hand, sound with a great 
expressive content with slowing varying upper partials may loose its “expressivity” when 
analyzed in a linear scale. The trade off between the number of PCs that is needed to represent 
a sound and the timbre characterization is highly dependent upon the scale used. In this study 
linear scale was used for all analyses. 

Signal Reconstruction 

Signal reconstruction from measured and processed spectral data was made by additive 
synthesis, in which each partial is represented by a sine wave. Note that the signal was 
assumed to be harmonic with no variation in frequency. No transients or noise components 
were considered, so additive synthesis can be calculated by (Serra, 1997): 

)]0(2cos[)()(
1

rr

R

r
r ftAts θπ += ∑

=

 

where s is the reconstructed signal and Ar(t), fr and θr(0) are the amplitude, frequency and 
initial phase of partial r, respectively. Fig. 2 illustrates the analysis procedure. 



 

Figure 2: Diagram of the sound analysis 

Results 

This section presents an analysis of the results obtained with two samples. These samples 
have the same duration (3666 ms) and same frequency (749 Hz), both sampled at a rate of 
44.1 kHz, in 16 bits, PCM linear mono. The first of these examples (expressive note) 
corresponds to the F sharp (tuned at A=445 Hz) sustained by the clarinet along the 8th and the 
first half of the 9th measures of Brahms Clarinet Quintet op. 115. In this example matrix X 
contains the amplitude values of the first 12 partials in 156 time frames, each one with a 
duration of approximately 23 ms. Fig. 3 shows the magnitude spectrum (matrix X) of the 
expressive note. 

 

Figure 3: Spectrogram with the first 12 partials of an F sharp (749 Hz) 
played by the clarinet at the 6th measure of Brahms Clarinet Quin-
tet op. 115 - expressive note. 

The first 3 PCs recovered a total variance (likelihood) of 90% for this signal. Auditory 
comparison tests showed that the signal could be well represented by this reconstruction, as 
no significant difference could be perceived between both original and reconstructed sounds. 
Fig. 4 shows the spectrogram containing the first 12 harmonics of the expressive note 
reconstructed from the first 3 PCs. 

 



 
Figure 4: Spectrogram of the reconstruction of the expressive note from 

Figure 2, using 3 PCs. 

The other example (plain note) corresponds to the same note played with a minimum of 
intentional dynamics variation. Fig. 5 shows the spectrogram containing the first 12 partials of 
the plain note (original) and Fig. 6 shows its reconstruction from 3 PCs. 

 

Figure 5: Spectrogram with the first 12 partials of the same F sharp (749 
Hz) played on the clarinet with little dynamic variation – plain 
note. 



 

Figure 6: Spectrogram of the reconstruction of the plain note from Fig. 4, 
using 3 PCs. 

Analysis of the Meaning of the Principal Components 

Fig. 7 shows the 2nd PC as a function of the 1st for the expressive note. The plot corresponds 
to projecting the data measured in 12 dimensions (amplitudes of each of the first 12 partials) 
on a plane, which contain their largest variation. These 2 dimensions accumulated 90% of the 
signal variance. The curve shows the time evolution of the note where each time frame is 
represented by a star («). These points are linked in chronological order. The begining and 
the end of the sound are marked on the graph. Since all time frames have the same length, the 
distance between two points represents the degree of time variation, i. e. the closer the points, 
the smaller the variation occurred between them. 

Larger timbre variations can be observed nearly the end of the sound, precisely in the last 25 
points (from point D through the end), corresponding to the last 575 ms. This is related to the 
accentuated diminuendo occurring at the end of the note. Note that this diminuendo begins 
approximately at 2 seconds from the end, but the analysis shows that larger timbre variations 
take place only on the last half second. While the starting point of this variation could be 
heard, more systematic auditory tests shall be made in order to validate this relationship. 

From the beginning of the sound through point B of the expressive note, it was verified that 
the points were much closer to each other, which indicates the occurrence of softer timbre 
variations if compared to the above mentioned. This is where the crescendo takes place and, 
therefore, timbre variation appears to be slower along the crescendi if compared to the 
diminuendi. 

The 1st PC shows a more accentuated variation. Examining the time-varying curves of each 
component, it can be seen that the 1st PC follows the sound amplitude envelope, indicating a 
narrow relationship with the signal total energy. The weights applied to this PC appear to 
shape each partial  with a certain degree of variation related to the global sound amplitude 
envelope. It is equivalent to saying that the weight of the first PC measures the tendency of a 
specific partial to follow the global amplitude of the sound during the time. The variations in 



the 2nd PC seem to be related to located configurations of the spectrum that, possibly, 
represent timbristic nuances of the sound. 

 
Figure 7: First 2 PCs for the expressive F sharp (749 Hz). 

Fig. 8 shows the 2nd PC as a function of the 1st PC for the plain note. Smaller variation of the 
1st component is evident here, confirming the statement that the 1st PC is related to the 
variation of the sound intensity (energy). The variation of the 2nd PC occurs practically in 
two movements: negatively during the first three quarters of the sound and positively after 
that. This reveals a more ordered behavior of the 2nd PC, which seems to represent a smaller 
complexity of timbre development for plain sounds. This factor is still under investigation by 
comparing notes from different regions of the instrument. 

 

Figure 8: First 2 PCs for the plain F sharp (749 Hz). 



It is also verified that the accumulated variance of the reconstruction is much smaller for the 
plain note (74%) than for the expressive note (90%), but they grow much faster, almost 
equaling their values when 6 PCs are used. This fact appears to be related to short duration 
fluctuations that assume less importance for PCs of lower order for the case of signals with 
larger dynamic variation. Further tests will be made with PCs of higher order. 

Analysis made in different registers of the clarinet showed that notes of different timbre 
characteristics follow that same overall behavior of timbre variation here discussed. Fig. 9 
shows the 2nd PC as a function of the 1st for an F sharp two octaves below (187 Hz), which 
was taken from the same passage form Brahms Quintet, 11 eleven measures ahead (15th 
measure). Figure 10 shows the same plot for the same note played with a minimum of 
intentional dynamics variation. 

 
Figure 9: First 2 PCs for the expressive F sharp (187 Hz). 

 

Figure 10: First 2 PCs for the plain F sharp (187 Hz). 



Conclusion 

Each PCA discussed was performed individually for each sound. This kind of analysis is 
especially useful for data reduction, since an optimal basis for each note is obtained. This 
makes possible to have most of the sound reconstructed by few PCs. The sound representation 
obtained after this data reduction was able to reveal many aspects of spectral parameter 
variations related to dynamic timbre evolution due to intentional expressive inflexions given 
by the player in a musical performance. However, a systematic observation on these timbre 
characteristics comparing different notes of the instrument was not facilitated due to the fact 
that each sound was represented on its own basis. A future work is to perform only one PCA 
across several concatenated spectra from different notes covering the whole extension of the 
clarinet. The basis generated by this kind of analysis explains all the notes at once, creating 
what can be called a Clarinet Timbre Space. In such a space, each note will have its region of 
variation, and notes with similar timbre characteristics will lie closer within the clarinet space. 

The importance and need of this study elapses from the own nature of timbre, which doesn't 
have yet a precise and logical definition, even though the perceptual mechanisms involved in 
its detection are perhaps the most precise of our perceptual system. The comprehension of the 
dynamic control that the performer retains on the sound he/she produces on his/her instrument 
and how this control is perceived by the listener contributes not only to our understanding of 
the phenomenon “music”, but also drives us to formulations of platforms that might offer 
other types of control for other types of musical structures: “...the future of the live 
performance depends on new instruments.” (Smalley, 1986). 
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