
Some Applications of the Sound Object Library

Victor E P Lazzarini
Department of Music
National University of Ireland, Maynooth
Maynooth Co. Kildare
Ireland
e-mail: Victor.Lazzarini@may.ie

Abstract

This paper describes a number applications of the Sound Object (SndObj)
Library. The SndObj library is a cross-platform object-oriented library
which provides classes for audio synthesis and processing with soundfile,
text and realtime audio IO support. In particular, the newly-developed
realtime input and output classes are discussed. The implications for the
easy development of sound processing applications are assessed. Examples
of MFC-based graphical user interface programs are shown. Some
possibilities of integration with multi-platform frameworks are considered.
As a complete example, a composition application is presented: the
computer instrument of a piece for live performer and computer.

1. The Sound Object Library

The Sound Object (SndObj) Library is a C++ object-oriented audio programming library
(Lazzarini & Accorsi, 1998). It was designed for use by programmers and composers to
develop sound manipulation applications. The library is being designed both as framework
and toolkit. Its classes encapsulate all the processes involved in sound creation, manipulation
and storage. Another feature of the library is portability across UNIX and Windows
platforms, allowing for platform-specific code where necessary (realtime IO is being currently
implemented on certain operating systems). The library class hierarchy is founded on three
base classes, corresponding to sound processing objects, maths function-tables and sound
input/output objects.

Version 1.0 of the SndObj library includes several synthesis and processing objects and
support for RIFF-Wave and AIFF soundfiles. Platform-specific objects provide realtime input
and output, currently implemented on SGI workstations under IRIX 6.5, Windows95/98 and
Linux/Unix with Open Sound System. Parts of this project have been developed on a number
of platforms, Sun Sparc under Solaris, IBM RISC 2000 under AIX and SGI O2 under IRIX,
as well as on Pentium PCs under Windows 95 and Linux. At the moment, the latest (beta)
versions of the library have been built on Windows, Solaris and IRIX operating systems.
Reference documentation, including sample applications is currently available in html format.
Compiled library binaries (Windows, Irix, Linux and Solaris), C++ code, documentation and
sample programs are available at the NUI Maynooth web site (http://www.may.ie/
academic/music/musictec). An extended introduction to audio programming and the library
can also be found in (Lazzarini, 2000).

2. Realtime input and output

The addition of realtime audio input and output has created a number of new applications for
the library. Initially, realtime audio IO classes were developed for the SGI platform, based on
the Irix Audio Library API. Support for Windows realtime audio, based on the Multimedia
Extensions API, and Linux, based on the Open Sound System API, was added. These classes
are all derived from the SndIO base class. The model adopted was that of separating these
platform-specific code from the multi-platform classes. Furthermore, each platform has a
specific set of three classes for realtime IO: an abstract base class, an input class and an output
class.

Platform Base class Input Output
SGI SndSgiRT SndSgiRTI SndSgiRTO
Windows SndWinRT SndWinRTI SndWinRTO
Linux/OSS SndOssRT SndOssRTI SndOssRTO

Constructors for these classes have almost similar arguments, so their use in a program is very
similar. This approach was considered more suitable than that of designing a single class with
mixed code controlled by compile-time definitions for each platform. The user have to define
exactly what platform is his target at the time of coding. Modifying the code for a different
platform is very simple, just a matter of changing the class constructor. Their behaviour,
including that of their public methods, is the same as any other SndIO-derived class. Read()
and Write() methods are provided for reading and writing samples from/to the DAC/ADC.
Similarly to other library classes, its use is very straightforward, enabling the quick
development of audio processing software.

The following code excerpt shows the use of an realtime output object used in conjunction
with a SndObj-derived object:

SndWinRTO output(1); //mono 16-bit output
output.SetOutput(1, &oscillator);//sets the SndObj-derived

//object oscillator
//as the output to channel 1

(...)
for(int n = 0; n < 44100; n++){
// loop 44100 times
(...)
oscillator.DoProcess(); //oscillator processing
output.Write(); //writes samples to DAC
(...)
}

Realtime MIDI control input is also being implemented on the platforms above. This is
performed by the SndIO-derived SndMidiIn class. A number of SndObj-derived MIDI
message manipulation classes complement the functionality of the system. These classes are
going to be available in the next version of the library, adding new possibilities for gesture
control of signal processing.

3. MFC-based examples

Some new possibilities presented by the realtime IO can be demonstrated by a number of
stand-alone applications. These were developed using a Microsoft© C++ graphical user
interface and application framework, MFC. Although this framework, including its
application models, is not exactly designed for the typical music/audio applications, a simple
dialog-based model can be used to provide basic graphic user interface. Four programming
examples were developed showing the possibilities of the library in association with MFC.
These are collectively called SndObjTools, for lack of a better name. They include simple
reverberation unit, WSchroeder; a drone synthesizer, WRisset; a multi-string resonator,
WStreson; and a channel vocoder/bank of filters, Wcvoc (fig.1).

3.1 The graphic interface

As mentioned before, these programs are based on a simple dialog-based MFC application
model. This provides a dialog box with all its custom controls, without a menu bar or a
background canvas. Since the function of these programs is to get an audio input, process it
and send the result to the output, this simple model is enough. An exit button is provided for
killing the application and a process button is available for toggling processing on/off. A
number of sliders, text boxes, lists and radio buttons are used to change application
parameters.

Figure 1

The dialog box application relies on an object derived from the MFC class CDialog. This
contains pointers to SndObj- and SndIO-derived objects as class members. These objects are
responsible for the sound processing algorithm. Ordered calls to the DoProcess() methods
of the SndObj-derived objects are used in a processing loop to generate/process audio
samples.

3.2 Multithreading

A multithreading model was used for these applications. This enables the immediate return of
control to the application interface, so that some parameters can be altered on-the-fly. It also
makes possible the on/off switching of the processing function. The program can behave in
similar fashion to an outboard effects processor. For instance, in the case of the WCvoc
program, shown in fig.1, the frequency sliders can be used to change the filter centre
frequency in realtime.

The multithreading is achieved by creating an instance of the MFC class CWinThread and
creating a function which will be executed in a secondary thread. This function contains the
processing loop, which runs until a signal is sent to interrupt it. The secondary thread starts
when the MFC function AfxBeginThread()is called. The name of the thread function and a
pointer to the CDialog-derived class containing the processing objects are passed as
arguments to AfxBeginThread(). The thread function contains the ordered calls to the
DoProcess() methods of the processing objects. When this function returns, the secondary
thread is finished and memory de-allocated. The start and termination of the processing thread
is controlled by toggling on/off the process button in the user interface.

4. Other frameworks and multi-platform code

The examples mentioned above were developed for the Windows platform only. A more
interesting situation would be to develop multi-platform GUI applications, taking advantage
of the cross-platform features of the library. The use of a cross-platform framework will help
develop such applications. Nevertheless, the multithreading support is somewhat different in
UNIX and Windows, so some differences in coding are to be expected. In general, it is
expected that a certain degree of similarity can be maintained between the code for different
platforms. It should be noted that the use of a C++-based framework is also preferred to
script-based GUIs, such as Tcl/Tk, or interpreted languages such as Java. The reason is that
the C++-frameworks provide far better possibilities for the integration of code and increased
flexibility. Also, because the final product is always an executable binary, there is no
necessity of a run-time system. Some experiments with the V framework (Wampler, 199)
suggested that it could be successfully employed to generate cross-platform applications.
Since it is not a commercial software, its integration with the SndObj library is likely to be
pursued further. It would enable the whole development process to be based on open-source
software.

5. A computer instrument

As an example of a composition application, the computer instrument for a piece called The
Trane Thing, composed by this author, is discussed. The piece was written for tenor
saxophone and computer instrument. This instrument is a program developed for Windows,
which does audio processing in realtime. Two basic ideas were behind this program: the first
one was to set a number of virtual strings which would be excited by the incoming saxophone
sounds; and the second, to sample sounds and play them back later. In terms of composition,
the piece follows a very simple procedure, presents a certain number of musical ideas and
comments upon them. These commentaries are not only written, but also improvised by the
player, and here the possibility of using sampled elements is very important structurally. Most

of the motivic fragments used are based on the music of John Coltrane. Nevertheless, they
are based on literal quotations, but come from the author’s memory of Coltrane’s recordings.

The program is an MFC-framework dialog-based application. It features four string resonators
(Moore, 1990; Steiglitz, 1995), based on StringFlt classes, a number of gain controls, and
also four sampling units, based on SndLoop classes. The string resonator frequencies can be
set by a slider, and each of them work around a certain octave range (sometimes overlapping).
The initial frequencies are tuned to specific pitches that are structurally important in the piece,
so that the computer responds to them when they are played. Each string has a gain
attenuation control, which can be used to regulate individual intensities. These are also slider-
based, but in order to avoid unwanted clicks, a smoothing fade-in/fade-out was implemented.
The fade in/out time is pre-set to of ½ second, on which the gain changes from the old setting
to the new one.

The sampling units, as mentioned before, are based on a SndLoop object. This is a custom-
developed class (which will appear in later editions of the library) that samples a signal and
repeats this signal in a loop at a certain speed. The length of the loop in seconds and the pitch
change (a multiplier) can be set by the user. There is also a method, Resample(), which can
be used to trigger a new sampling operation. The controls on the program panel allow the user
to choose between a number of pre-set pitches, set the gain attenuation and resample a signal,
on each of the four sampling units. In addition, each of them also have a different sampling
length from less than one to nine seconds. The mixed output from the sampling units is
further modified by the use of two allpass filters which give a light (electronic-sounding)
reverberation. The strings output is added to this signal and this sum is sent to the computer
DAC (Fig.2). The program window is shown on Fig.3. Each one of the processing units can
be turned on/off by a button. The program operation is also enabled by a general processing
on/off button.

Figure 2

Figure 3

This software has a similarl designed to the previously discussed SndObjTools programs. It
relies on two threads, a control one, that takes input from the user and a processing thread.
The latter is based on simple loop that calls the objects processing methods. The processing
on these objects can be bypassed by the use of the Disable() method. The reverse action is
made possible by a Enable() member function. All the calls to parameter-setting methods
run on the control thread, so on-the-fly parameter change (slider movements, etc..) are
possible and have an immediate effect on the processing.

The design of a program such as this one, to be used in a composition is one of the most
important examples of the application of the SndObj library. It gives the composer the
possibility to create his/her own design for the processing of audio and integrate that in the
composition structure. The SndObj library makes it possible for many different algorithms to
be implemented, including new classes to extend the framework (the development of the
SndLoop class is an example of this). The result is also interesting in terms of performance
logistics. Since the instrument is an executable binary, it does not require any runtime system
or interpreter, apart from the operation system itself. So copies of the instrument can be easily
distributed. The performance of the piece will only require a reasonably fast computer,
running a particular OS, with good audio hardware. Also, because of the fact that the SndObj
library is portable to the most commonly found OS’s, it is possible to design instruments that
are fully portable across a range of platforms (using, perhaps, portable application
frameworks to make life easier).

7. Future Prospects

The SndObj library has become a very interesting tool for computer music composition and
research. Future prospects include the addition of MIDI i/o, currently being developed, and
support for other types of gesture control. In addition, the implementation of new processing
classes will also increase the scope for its applications. Also, more composition applications,
such as the one described above, will be developed. Finally, under research at the NUI
Maynooth, in a joint project of the Music and Computer Science departments, is the
implementation of a distributed processing system, based on and using the library. The target
platform is, initially, the Beowulf (Sterling et al, 1999), but it should be portable to SMP
machines. This system could provide a complete sound processing workbench on an
affordable supercomputing facility.

6. Conclusion

This paper described, briefly, a number of applications developed using the SndObj library. A
general description of the library was given and the new realtime input and output classes
were introduced. These were shown to add a very important functionality to the library. A
number of programs developed using the application framework Microsoft© Foundation
Classes were discussed. Some other GUI possibilities were also considered. The use of multi-
platform C++ frameworks was shown to be the most suitable way of adding graphical
interfaces to SndObj-based applications. As a final example, a computer instrument, written
for a particular musical use, was presented. In summary, the SndObj library can be used in a
number of interesting applications, a very small number of which was shown in this article. It
has the potential to be an interesting software tool for computer music research and
composition.

Bibliography

Lazzarini, VEP (2000). “The SndObj Sound Object Library”. Organised Sound 5 (1).
Cambridge Univ. Press, Cambridge.
Lazzarini, VEP & Accorsi, F (1998). "Designing a Sound Object Library". Proceedings of
the V Brazilian Computer Music Symposium. Editora da UFMG, Belo Horizonte.
Moore, FR (1990). Elements of Computer Music. Prentice Hall, Englewood Cliffs, NJ.
Steiglitz, K (1995). A Digital Signal Processing Primer. Addison-Wesley Publ. Co., Menlo
Park, CA.
Sterling, TL, Salmon, J, Becker, CJ & Savarese, DF (1999). How to Build a Beowulf: A
guide to the Implementation and Application of PC Clusters. MIT Press, Cambridge, MS.
Wampler, B (1999). V Reference Manual. HTML document. http://www.
objectcentral.com/vgui/vrefman/vrefman.html

