
Extending the Musical Capabilities
of a Multimedia Authoring Environment

Luciano Vargas Flores
lvf@inf.ufrgs.br

Rosa Maria Viccari
rosa@inf.ufrgs.br

Marcelo Soares Pimenta
mpimenta@inf.ufrgs.br

Universidade Federal do Rio Grande do Sul
Instituto de Informática – Laboratório de Computação & Música

Av. Bento Gonçalves, 9500 Bloco IV - Agronomia - Campus do Vale
Porto Alegre - RS - Brasil CEP 91501-970

Abstract

The ToolBook II1 multimedia authoring environment has been
successfully used to develop Music educational software under the projects of the
Computer Music Lab of the Federal University of Rio Grande do Sul (UFRGS,
Brazil). In this paper are reported the extensions made to this environment’s musical
capabilities during the development of the Rhythmic Training System (or STR,
which stands for Sistema de Treinamento Rítmico). These extensions were
necessary to allow the random generation of rhythmic sequences, in order to
simulate a “rhythmic dictation”, an exercise traditionally carried out in Music
classes. Such a task demanded the manipulation of MIDI files at the level of musical
events, and that is not directly offered by ToolBook’s high level of abstraction
functions.

The solution proposed by this paper is to employ dynamic-link libraries
(DLLs), which can be easily linked to ToolBook applications. In the application
example presented here, a sequencing function available in ToolBook plays a
temporary MIDI file, created by the function offered in the DLL based in parameters
computed by the calling program. The use of temporary files has also proved to be a
satisfactory solution to simplify the communication hold via the MIDI protocol.

Although the described solution satisfies STR’s design specific
requirements, the proposed alternatives for both the extension of ToolBook’s
musical capabilities and the exchanging of MIDI messages may be applied to other
similar projects.

Keywords: Music Education, Music Interface, MIDI, Multimedia, Multimedia
Authoring Environment, ToolBook.

1 ToolBook II is registered trademark of Asymetrix Corporation.

1. Introduction

The research group from the Computer Music Lab of the Federal University of Rio
Grande do Sul (UFRGS) is involved in the development of Music educational software. The
penultimate of these software to be created is a system that offers support to musical theory
classes that involve rhythm. It’s called the Rhythmic Training System (or STR, which stands
for Sistema de Treinamento Rítmico) and it was presented as a prototype at the Fifth Brazilian
Symposium on Computer Music (Fritsch et al., 1998).

STR was implemented using the multimedia authoring environment ToolBook II
Instructor version 6.0, from Asymetrix Learning Systems. This was a natural choice, because
this environment presents all the expected characteristics of a hypermedia modeling environment
(Soares, 1992, p.85) and has been also used as the tool for implementing a former system for
the PC platform, called SETMUS (Sistema Especialista para Teoria MUSical, or Musical
Theory Expert System – Zucco et al., 1997). Therefore, the research group already had the
expertise in successfully using ToolBook to build educational software. In addition, this
laboratory plans to integrate all the developed systems in one sole Music education environment,
and utilizing the same programming language is going to simplify this task.

However, this choice brought also a problem to be resolved, that was related to the
emission of examples and musical dictations requested by the user. These musical passages
sometimes had to be generated in real-time by the program.

The prototype upon which the STR was based, the SETMUS for PC, works with
musical samples in the Microsoft “Wave” file format (with extension .WAV), that is, digitized
waveform uncompressed files. In that system this approach is satisfactory, because what
matters in the SETMUS, being a system that recognizes arpeggios and scales, is only the notes’
sequence, their order. Neither the notes’ durations nor the elapsed time between them, which
constitute basically the rhythm, are important in that case. So, in programming the SETMUS, to
sound a sequence of notes it was only necessary to play small “Wave” files in the required
order, each one of them corresponding to one note of the sequence. Due to the file processing
issues involved, the elapsed time between the played notes results to be variable, depending on
the availability or not of each note file in the computer’s memory. But, as it was said before, in
SETMUS this delay is tolerable, because it does not interfere with the musical information being
transmitted, since there is no rhythm being dealt with.

The STR, on the other hand, is made to the study of rhythm theory, requiring a
computational solution that can handle the musical events’ timing, as long as, in this case, the
musical notes’ durations and the delays between their executions have to be exact. This
exigency eliminated, in that project, the possibility of employing the same alternative found in
SETMUS, that is the use of digitized waveform files sequences.

Coding in the “Wave” format would be sufficient if the only need was to present audio
examples of rhythm to the user. In such a case just one file per example could be used, and
these couldn’t be modified during execution time, in its timbres or tempos, for instance. Yet one
of STR’s main modules is a rhythmic dictation, in which the student has to hear rhythmic
sequences and then select on the screen the matching rhythmic figures in the correct order. For
this drill to offer every time a new dictation, what would challenge the student’s reasoning
(instead of repeating the same sequence he/she ever heard sometime), it is essential to build a
new dictation each time that that is requested. This must be made by the program itself, during
execution time and using some random manner of choosing the note sequence. Besides, after
this choosing, the sequence can’t be executed by just playing wave files in the order calculated
by the program, because of the already mentioned file-seeking delays. These delays would alter
the desired rhythmic result and confuse the interpretation of the sequence by the student.

The solution was to rely the sound emissions upon a system, the MIDI standard, that
would enable exact timing of note sequences and the musical events manipulation in order to
build these sequences.

This work’s purpose is to describe the proposed solution to this problem, that is the
extension of ToolBook’s musical functionality by means of dynamic-link libraries and the use
of temporary MIDI files as an alternative to data exchange. The paper is structured as follows:
In section 2 are exposed the reasons that lead to the choice of this particular solution, section 3
describes the application of this solution to STR’s project, in section 4 the results of this usage
are presented and, finally, section 5 shows the conclusions these results originated.

2. Extending ToolBook’s musical capabilities

In STR’s design, the decision made was for applying the MIDI (“Musical Instrument
Digital Interface”) protocol to all the sound emission processes in the software, instead of using
Microsoft’s “Wave”, the digitized wave file format accepted by the ToolBook authoring tool.

Adopting the MIDI protocol brings some advantages to the development of Music
educational systems, if compared with the utilization of digitized audio:

• Precision in musical execution;

• Availability of more resources to the user, like the possibility to choose the timbres
to be used in the notes execution and the control of the tempo in which are played
the dictations and the musical examples (Yavelow, 1992, p.1259); and

• Greater facility to manipulate MIDI files at the level of musical events, with
immediate consequences on simplifying the execution time mounting of the
rhythmic dictations presented to the student.

The encountered solution included, besides this option for the MIDI, the development
of a dynamic-link library, or DLL, of MIDI functions that are by these means available for use
in STR’s routines.

The need to extend ToolBook’s capabilities through a DLL is justified by the
limitations found in this multimedia developing environment concerning the generation of MIDI
music. Basically, ToolBook allows with greater ease the inclusion of MIDI files as “sound
clips” of the “book” under development, which wasn’t enough to the purposes of this project.

This environment also offers certain functions to deliver messages directly to the
computer’s soundboard, mainly through Windows’ MCI interface (Messick, 1995). However,
these functions turned out to be inadequate, as they showed unstable behavior when tested
under different hardware platforms during STR’s project. Hence the conclusion was that the
development of a DLL would allow the access to functions projected specifically to satisfy the
needs of this project in a more effective and robust way.

On defining the DLL’s functions, it was considered unnecessary the addition of some
for sequencing purposes, that means, some that could play MIDI files, because the one available
in ToolBook is acceptable. So, it was reached an economic, elegant and efficient solution to the
DLL’s basic mechanism: it would serve to edit a temporary MIDI file, with content and control
parameters passed in the function call. After being created, the temporary file could be played
with ToolBook’s own sequencing function. This solution arrived as a simpler alternative than
transferring memory pointers between the DLL and the ToolBook program.

3. The “strmidi1” DLL: definition and example of use

The MIDI function FazArqDitado, encapsulated in the “strmidi1.dll” library, has the
following calling format:

FazArqDitado(inicount, metron, instrum, tempo, sdictat, s2dictat)

The six parameters are:

inicount - boolean variable, indicating whether to include or not an initial counting
(a sounding reference for the tempo) during one measure before
executing the note sequence of the dictation.

metron - boolean variable, indicating if the note sequence of the dictation should
be accompained by metronome ticks.

instrum - string containing an integer from 1 to 128 corresponding to a General
MIDI standard instrument code, indicating with which timbre should the
dictation notes be played.

tempo - string containing an integer from 40 to 208, indicating dictation’s tempo
in number of quarter notes per minute.

sdictat - string containing the sequence of duration figures corresponding to the
rhythmic dictation, which coding will be explained below.

s2dictat - a parameter not yet implemented (it must be passed an “empty” string),
that will allow the definition of a second sequence of duration figures to
be executed simultaneously with the first one, constituting a rhythmic
dictation in two voices.

The description of the rhythmic dictation to be played, passed as the fifth parameter to
the FazArqDitado function, consists of a string of code words separated by spaces. Each one of
the code words denotes a rhythmic figure to be played as a musical note or as a rest. The basis
to mount the code word is an integer from 1 to 7, which represents one of the seven durations
available in STR, according to the correspondence below:

1 - whole note 5 - sixteenth note
2 - half note 6 - 32nd note
3 - quarter note 7 - 64th note
4 - eighth note

The durations can also be dotted, what is represented simply by including a period next
to the number (originating the, in fact, fourteen durations available in the program):

3. - duration with augmentation dot (dotted quarter note)

This part of the code, of course, denotes only the durations of the musical event, note
or rest, relative to the employed tempo. To complete the code word it’s necessary to specify the
type of musical event. In addition, there was included a syntax to represent whether a note
should sound less intense than the others, allowing for the use of the intensity as a rhythmic
feature. Both these complements to the code word are indicated by the use of the letter “p”, as in
the following example:

p3 - a letter “p” BEFORE a duration symbol indicates a rest of the same duration (in
this case, a quarter rest).

3.p - a letter “p” AT THE END of the whole code word indicates that this note
should be played with less intensity (the “p” was chosen as it conforms to the
dynamic symbol for “piano”). It shouldn’t be used after a rest since this doesn’t
make sense in this context (a rest can’t be “played with less intensity”).

That is, therefore, the complete syntax to the coding of the rhythmic dictations. It is not
too complex because it contains only the elements needed to accomplish the purposes it was
designed for, to be used by the STR software. As an illustration, see the following rhythm line:

To pass this rhythm line as a parameter to the FazArqDitado function it must be coded
into the following character string:

“3 p3 3. 4p”

The temporary files generated by this library function, always named after
“ditatemp.mid”, record the dictations as rhythm lines to be played only with C4 notes and using
the instrument chosen through the third function parameter.

It’s important to point out that, because of design choices made during STR’s project,
the dictations will have always the length of just one 4/4 measure. So, the initial counting and
the metronome ticks will sound for only one 4/4 measure each. It’s up to the programmer to
control the length of the rhythm lines passed in the function call, for the DLL does not handle
this internally. The initial counting and the metronome ticks were implemented as beats on one
of the percussive instruments available in the General MIDI standard (executed by default in
MIDI channel 10).

As it is, the MIDI function is limited, since it’s intended just to satisfy STR’s software
requirements. Nevertheless, this example served as a case of study to test if the extension of
ToolBook’s musical capabilities via DLL would permit its satisfactory employment in the
development of Music educational software.

4. Results

Through the implementation of the MIDI function, the process of recording a
temporary file for later execution turned out to be efficient in practice. The elapsed time between
the user clicking on an interface button to trigger this process and the music starting to play is
imperceptible to humans, seeming even to be instantaneous. Further more technical analyses are
being planned, with more exact measurements of this sound response time.

Another satisfactory consequence of this approach is that the resulting software is easy
to maintain, since it’s possible to add new functions to the builded DLL, which could then be
used in future versions of the STR software, as well as in new Music educational software to be
developed under the ToolBook II environment.

5. Conclusions

The achieved results indicate the success of the adopted approach in solving the
problem of music generation in STR’s project. The extension of ToolBook II’s multimedia
authoring environment musical functionality by means of a DLL, and also the use of temporary
MIDI files as a lesser complex alternative to manipulate MIDI messages for communication
purposes, proved to be practicable.

Therefore, this solution may here be proposed to be employed in the development of
Music software under the ToolBook II environment, in which shows up the need to exchanging
MIDI messages or data between different parts of the system.

6. References

FRITSCH, E. F. et al. (1998). Desenvolvimento de Software Educacional para a
Música: STR - Sistema de Treinamento Rítmico. In: SIMPÓSIO BRASILEIRO
DE COMPUTAÇÃO E MÚSICA, 5., 1998, Belo Horizonte. Anais do XVIII
Congresso Nacional da Sociedade Brasileira de Computação, v .3 . Belo
Horizonte: Escola de Música / UFMG, 1998. p.209-218.

MESSICK, Paul (1995). Maximum MIDI: Music Applications in C++. USA,
Greenwich: Manning, 1995.

SOARES, Luis Fernando G. et al. (1992). Fundamentos de Sistemas Multimídia. Porto
Alegre: Instituto de Informática da UFRGS, 1992. (Escola de Computação, 8., 1992,
Gramado.)

YAVELOW, Christopher (1992). Macworld Music & Sound Bible. San Mateo,
California: IDG Books Worldwide, Inc., 1992.

ZUCCO, L. A.; FRITSCH, E. F.; VICCARI, R. M. (1997). SETMUS: Sistema
Especialista para Teoria Musical para Plataforma PC. In: SALÃO DE
INICIAÇÃO CIENTÍFICA, 9., 1997, Porto Alegre. Livro de Resumos.. . Porto
Alegre: UFRGS, 1997. p.23-24.

