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Abstract

This paper presents results of new wavelet coeÆcients tests and application to

bassoon and French horn sound analysis. The coeÆcients were constructed based on

musical chromatic intervals and applied to dilation equation to yield wavelet �lter

coeÆcients. Some examples compare results of recorded and inverse transformed sig-

nals showing the possibilities of their application to sound analysis of data segments

of interest.

Introduction

Researches for methods of sound synthesis that can reproduce accoustic instruments de-
pend on analysis methods that provide eÆcient and easy to compute transfer functions of
natural sounds. Besides this, powerful analysis tools can be used to produce new sounds
that can applied to electroacoustic music which are not yet explored.

During the last two decades there have been great interest on functions that, as trans-
forms, can be used in analysis and synthesis of sound events. Among them, wavelets
have called attention of scientists of many subjects who search for new methods for signal
analysis, �ltering and reconstruction [1, 18]. Wavelets have been used in image processing
[1, 2], restoration of recordings [13], seismology [14], economy [11], among other subjects.
As the Discrete Fourier Transform (DFT), the Discrete Wavelet Transform (DWT) are
linear operations performed on a 2n vector that yields another vector of the same size
and, as orthogonal function they are inversible like other transfoms. The idea in wavelet
�ltering is to use variable scales in time and frequency domains which can sparsely repre-
sent each data set when we apply a proper wavelet function. This means that each data
interval can be ampli�ed for further analysis of each component in its corresponding scale.

Grossman and Morlet's work [12] at the end of the 70's played an important role in
engineering and mathematics research of bases for harmonic analysis on other function
spaces. Searching for square integrals of (ax + b), they faced the problem of a base
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construction for L2(R)1 from a discrete set of ax + b. They have shown that if there is a
function  (a;b)(t) 2 <, its elements can be used as an orthogonal base (see eq. 1) or, each
�nite energy data of a signal can be represented as a linear combination of  (a;b)(t) and
its coeÆcients can be represented by their scalar products

R1
�1  (a;b)(t)dt, which measure

the uctuation of the signal f(t) around b on scale a.

 (a;b)(t) =
1p
a
�  

 
t� b

a

!
; a > 0; b 2 <: (1)

Meyer [17] has found a special smooth function which he called Wavelet because of its
oscillation around the x axis. This function approximates to zero at �1 and its discrete
orbit yields a Hilbert base for L2(R) and also an unconditional base for all the Banach
spaces2. Lemari�e [15] has also used it to prove basic facts of Calder�on-Zigmund algebra, but
only a few years ago, Daubechies [5] developed an algorithm to construct other wavelets for
some particular spaces of functions including orthonormal wavelets with compact support.

The advantage of DWT over DFT methods is that Fourier basis are frequency de-
pendent but not time dependent, which means that small changes in frequency domain
produce changes all over the time domain. Wavelets depend on frequency domain (via
dilation3) and of time domain (via translation4) which is an advantage. For a more detailed
approach see [20].

DWT is the most recent solution to DFT limitations once it can solve the problem of
speci�c event localization in a signal through scaling and modular windowing of the func-
tion. Wavelets transform functions allow a more compact representation when compared
to other transform methods and can be used for analysis, synthesis and compression of
signals, images and other numerical analysis.

In recent researches [7, 9] we have presented new set of coeÆcients based on chromatic
subdivision of the musical scale and showed its applicability to sound signals analysis.
We have also presented some results of a combined method of signal processing using the
Short Time Fourier Transform (STFT) to test results achieved with DWT [8].

Multiresolution Analysis

Multiresolution analysis (MRA) [6] can be done through a scaling function � which is a
sequence of near subspaces Vj in L

2[�1;+1] or:

� � �V�2 � V�1 � V0 � V1 � V2 � � � �
and satis�es the following properties:

1L2(R), is called Hilbert space, a sequence x = (�k) of complex numbers �, where: � = (� +
i�); �; � 2 <, of square sums:

P
1

1
j�kj <1.

2set of continuous linear applications on a normed space L2, where: �(L) = T : L! L.
3Function that takes a vector and returns another multiplied by a scalar: �!v ! ��!v , where � is any

scalar and �!v any vector in any space.
4Function that sums a constant vector

�!
k to any other: �!v !

�!
k +�!v , where �!v and

�!
k are vectors in

any space.



1. Density or [jVj is dense in L
2[�1;+1].

2. Separation or \jVj = 0.

3. Scalability or f(t) 2 Vj () f(2t) 2 Vj+1 for all integers j and arbitrary f .

4. Orthonormality or function �(t � k), for k = 0;�1;�2; : : : forms an orthonormal
base for V0.

The MRA fVjg is generated by the scaling function � where, for each j the subspace
Vj is generated by �jk, for k = 0;�1;�2; : : : and, since f�jkg is an orthonormal basis in Vj
for each j = 0;�1;�2; : : :, consider that � 2 V0 � V1, so it can be written:

�(t) =
+1X
�1

hk�
1
k(t) or (2)

�(t) =
p
2
+1X
�1

hk�(2t� k): (3)

Equation 3 is called dilation equation, and its coeÆcients hk are the wavelet �lter

coeÆcients of the MRA5.
Fourier transform of the dilation equation can be calculated from:

�̂(�) =

 
1p
2

+1X
�1

hke
�ik�=2

!
�̂

 
�

2

!
: (4)

Wavelet CoeÆcients

As shown by Daubechies and others [6], coeÆcients of a wavelet �lter must satisfy the
equation:

+1X
�1

jhkj2 = 1; (5)

and, once k�k = 1 [18], hk can be written as:

hk =
Z +1

�1
�(t)�1k(t)dt (6)

=
p
2
Z +1

�1
�(t)�(2t� k)dt (7)

The orthogonality of � or

5Characterization of scaling functions is a bit more complicated than sequences of complex numbers of
the wavelet �lter. Once we calculate the wavelet coeÆcients the scaling function � can be obtained from
equation 3.



Z +1

�1
�(t)�(t� k)dt = Æ(k; 0); (8)

where Æ is the Kronecker symbol6, can be calculated from the dilation equation.

X
m

X
n

hmhn2
Z +1

�1
�(2t�m)�(2t� 2k � n)dt = Æ(k; 0)c: (9)

Equation 9 can be expressed as
P

m or

X
m

hmhm+2k = Æ(k; 0); (10)

where k is an arbitrary integer7. If we assume that � can be integrated and

I =
Z +1

�1
�(t)dt 6= 0 (11)

we can integrate both sides of the dilation equation as

R +1
�1 �(t)dt =

p
2
P+1
�1 hk

R +1
�1 �(2t� k)dt

= 1p
2

P+1
�1 hk

R+1
�1 �(s)ds

: (12)

So, if we equal �rst and third parts of equation 12 divided by I (see equation 11), we
have:

+1X
�1

hk =
p
2: (13)

Methods

We carried out the analysis of recorded sound frequencies of French horn and bassoon
using the attack and steady-state transients. Analysis methods were done as previously
described [7] applying the DWT, splitting low-pass window, thresholding, high-pass recover
and inverse DWT. Using Pollen's parametric equations [19] we proceed the calculation of
two sets of wavelet coeÆcients (chroma4 and chroma6). Cody and Daubechies [3, 6] also
described the calculus of the space parameter8 of a system hn for �2 � n � 3, which can
be obtained from:

h�2 =
(1 + cos� + sin�) � (1� cos � � sin�) + 2 sin� cos�

4
(14)

6A function is said to have a Æ Kronecker when it has only two values 0 and 1.
7Note that

P
m
jhmj

2 = 1 is a special case of k = 0.
8A space parameter is a set of solutions that map a set of functions into one or more variables or

parameters



Figure 1: Example of the splitting algorithm of the transformed signal (the low-pass
segment was used as scaling function).

h�1 =
(1� cos� + sin�) � (1 + cos � � sin�)� 2 sin� cos�

4
(15)

h0 =
1 + cos(�� �) + sin(�� �)

2
(16)

h1 =
1 + cos(�� �)� sin(�� �)

2
(17)

h2 = 1� h�2 � h0 (18)

h3 = 1� h�1 � h1 (19)

Using � = 21=12 and � = 0 we have a set of 4 coeÆcients we named chroma4 and using
� = 21=12 and � = 22=12 � � we have a set of 6 coeÆcients we named chroma6.

Signals were converted from RIFF/WAV format to a text numeric vector and splitted
into �les with 4096 samples from attack and steady-state parts. Using a similar algorithm
as described by Mallat [16], each transformation was splitted into a high-pass and low-
pass segment. The high-pass was discarded and the low-pass was used as input for a
new transformation. We studied the signal reconstruction from the low-pass for each step
(decimated by a factor of 2, 4 and 8) until the low-pass segment could yield a signal
reconstruction without signi�cant loss of quality. The results of transform and recovery of
the signal were compared to the original sound using a STFT analysis.

Wavelet coeÆcients were used as low-pass and high-pass complementary �lters that
can be written as a Finite Impulse Response (FIR) �lter by the equation:



yk =
1X

t=�1
c(k�t) � xt (20)

where yk is the output of a signal xk convolved with c(k�t).

Results

Although we have analysed all frequencies of each instrument's notes we present example
results for low sounds of the bassoon and characteristic sounds of the French horn, since
these sounds are more diÆcult to analyse using traditional Fourier methods. Low sounds
of the bassoon present an overlap due to the small di�erence between its harmonics which
can not be well visualized in Fourier spectrum. Besides, the high energy harmonics are
found around 500 Hz and, considering low sounds, this can be located far away from
the fundamental frequency. Sounds of French horn were choosen because of its harmonic
richness.

The harmonic energies of each segment re�er to a 100 samples size window of STFT
of attack and steady-state sections of its envelope. Windows are represented by tn and
values are absolute magnitude around n for n = 1 : : : 5.

Sound signals reconstructed after using chroma4 and chroma6 wavelet transforms
showed no di�erence to the original recorded sound for all notes of the french horn. As
we have shown before [8], when compared to other DWT coeÆcients (Haar, Daubechies4
and Coiet), these coeÆcients yields better results.

Table 2 shows the frequency and magnitude of the highest energy harmonics of the
bassoon. We noticed a slight variation in sound reconstruction but it does not represent
a change on sound quality. Graphics representation of the bassoon signals (see �gures 2,
3 and 4) compare the original and recovered sound after 4 step transforms using chroma4

and chroma6 coeÆcients.
We have also tested more than four steps transforms and compared to other wavelet

coeÆcients (e.g. Haar, Daubechies4, Daubechies6 and Coiet) and we have obtained some
sound distortion. Analysis showed a pattern repetition of the centroid section in harmonic
basis. This is more characteristic when using chroma4 coeÆcients and sugests we can use
it to study instrument sound signatures or quality once we could stablish some standards.
We are carrying out other researches on this matter.

Conclusion

The set of new wavelet coeÆcients showed to be stable and yields good results for in-
strument sounds analysis. For all tested signals, results were very consistent allowing the
decomposition, analysis and reconstruction of sound signals and very accurate identi�ca-
tion of sound events at speci�c data segments of interest. Although compression of signals
was not studied, for it was not the scope of this paper, it has to be studied to verify its



Figure 2: Recorded sound spectrum of the attack section of a bassoon playing a low C
(� 64:60 Hz).

Figure 3: Recovered sound spectrum of the attack section of a bassoon playing a low C
(� 64:60 Hz) after transformation using chroma4 wavelet coeÆcient.



Figure 4: Recovered sound spectrum of the attack section of a bassoon playing a low C
(� 64:60 Hz) after transformation using chroma6 wavelet coeÆcient.

application on this domain. Once transforms and data recovering are precise, using win-
dowing methods and convolution with those coeÆcients can also ease the spectral analysis
and provide means for the calculation of transfer funtions to be used on synthesizers and
music composition. The study of the distortion produced with transformations above 8
steps of the MRA needs to be carried out in an attempt to verify its applicability in sound
centroid analysis and quality control of accoustic instrument construction.
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signal frequency t1 t2 t3 t4 t5
original 441.43 0.6996 3.3319 5.7855 6.2912 5.7680
Chroma4 441.43 0.6996 3.3321 5.7860 6.2918 5.7701
Chroma6 441.43 0.6988 3.3283 5.7787 6.2824 5.7616
original 882.86 0.2538 1.2277 2.1117 2.2623 2.0957
Chroma4 882.86 0.2535 1.2264 2.1091 2.2591 2.0941
Chroma6 882.86 0.2542 1.2278 2.1094 2.2582 2.0922
original 1324.29 0.0632 0.3432 0.6033 0.6418 0.6201
Chroma4 1324.29 0.0630 0.3427 0.6028 0.6413 0.6182
Chroma6 1324.29 0.0638 0.3451 0.6057 0.6441 0.6211
original 1765.72 0.0407 0.2009 0.3366 0.3471 0.3383
Chroma4 1765.72 0.0410 0.2016 0.3375 0.3484 0.3355
Chroma6 1765.72 0.0406 0.2008 0.3367 0.3476 0.3385
original 2207.15 0.0320 0.1362 0.2057 0.2035 0.1956
Chroma4 2207.15 0.0322 0.1363 0.2052 0.2030 0.1916
Chroma6 2207.15 0.0319 0.1357 0.2042 0.2030 0.1922
original 2648.58 0.0082 0.0281 0.0364 0.0377 0.0451
Chroma4 2648.58 0.0085 0.0297 0.0387 0.0399 0.0451
Chroma6 2648.58 0.0083 0.0286 0.0364 0.0369 0.0421
original 3090.01 0.0074 0.0250 0.0284 0.0220 0.0169
Chroma4 3090.01 0.0074 0.0263 0.0306 0.0237 0.0188
Chroma6 3090.01 0.0075 0.0254 0.0274 0.0225 0.0154
original 3531.45 0.0011 0.0089 0.0156 0.0148 0.0182
Chroma4 3531.45 0.0016 0.0097 0.0162 0.0158 0.0211
Chroma6 3531.45 0.0012 0.0102 0.0166 0.0136 0.0218
original 3972.88 0.0036 0.0108 0.0088 0.0049 0.0083
Chroma4 3972.88 0.0037 0.0125 0.0109 0.0058 0.0085
Chroma6 3972.88 0.0039 0.0117 0.0094 0.0067 0.0056
original 4414.31 0.0017 0.0021 0.0008 0.0007 0.0024
Chroma4 4414.31 0.0016 0.0018 0.0012 0.0006 0.0046
Chroma6 4414.31 0.0013 0.0021 0.0012 0.0008 0.0045
original 5297.17 0.0013 0.0018 0.0017 0.0024 0.0053
Chroma4 5297.17 0.0011 0.0019 0.0022 0.0022 0.0048
Chroma6 5297.17 0.0013 0.0015 0.0001 0.0020 0.0046
original 5738.60 0.0024 0.0047 0.0032 0.0060 0.0069
Chroma4 5738.60 0.0025 0.0056 0.0033 0.0065 0.0091
Chroma6 5738.60 0.0027 0.0063 0.0045 0.0074 0.0085
original 6180.03 0.0012 0.0024 0.0015 0.0012 0.0024
Chroma4 6180.03 0.0010 0.0030 0.0023 0.0014 0.0033
Chroma6 6180.03 0.0014 0.0031 0.0009 0.0015 0.0037

Table 1: Sound of French horn playing an A (� 440 Hz), comparison of original sound and
recovered after transformation with chroma4 and chroma6. Steady-state, MAG(max) =
6:2920 at 441.4 Hz.



signal frequency t1 t2 t3 t4 t5
original 323.00 0.0150 0.1672 0.4218 0.5365 0.4915
Chroma4 323.00 0.0150 0.1674 0.4225 0.5377 0.4926
Chroma6 323.00 0.0147 0.1662 0.4206 0.5349 0.4910
original 387.60 0.0225 0.2622 0.6790 0.8621 0.8048
Chroma4 387.60 0.0225 0.2623 0.6799 0.8631 0.8054
Chroma6 387.60 0.0222 0.2605 0.6768 0.8591 0.8028

original 452.20 0.0266 0.3308 0.9116 1.1945 1.2027
Chroma4 452.20 0.0266 0.3308 0.9116 1.1938 1.2025
Chroma6 452.20 0.0262 0.3286 0.9083 1.1899 1.1980

original 516.80 0.0213 0.2661 0.6794 0.7578 0.8655
Chroma4 516.80 0.0213 0.2659 0.6783 0.7561 0.8652
Chroma6 516.80 0.0210 0.2642 0.6768 0.7556 0.8619

original 581.40 0.0116 0.1458 0.3637 0.4034 0.4793
Chroma4 581.40 0.0116 0.1454 0.3627 0.4031 0.4793
Chroma6 581.40 0.0115 0.1455 0.3635 0.4017 0.4770

Table 2: Comparison of frequency energies of a bassoon playing a C (� 64:60 Hz). Attack
section MAG(max) = 1:6760 at 463.0 Hz. Values with signi�cant di�erences in magnitude
(Æ � 0:002) are in bold face characters.


