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1 INTRODUCTION

The  beginning  of  this  century  opened  a  debate  in  composit ion  theory,  which  too  a
large  extent  remains  unresolved.  While  there  was  a  polariza tion  at  first,  between
the  schools  around  Hindemi th  and   Schoenberg,  the  first  school  lost  its  influence
almost  entirely  in  the  60s  and  the  second  gained  great  momentu m  engendering
serialism  and  experimenta l  music  in  the  70s.  Even  still  in  the  80s  many  composers
who  had  not  embarked  on  either  serialism  or  experimen tal  music  found  themselves
alienated  and  isolated.  The  climate  changed  over  the  last  decade  and  the  motto
“anything  goes”  is  widespread.  However,  the  debate  itself  does  not  receive  great
attent ion.  The  fact  that  Hindemith’s  scientific  approach  was  exposed  by  Schole
(1938)  as  pseudoscien tific  strengthene d  the  argument s  of  the  opponen ts  who
understood  music  as  a  solely  socio- cultural  phenomeno n  (Adorno  1949).  This  also
might  explain  why  psycho - acoustic  research  has  been  marginalized  and  only  few
composers  have  a  more  comprehensive  unders ta nding  of  the  subject  matter.  In  this
context,  Terhard t’s  (1976)  theory  of  virtual  pitch  takes  in  a  prominent  place.
Although  widely  quoted  and  certainly  of  interest  to  composers,  it  still  is  frequent ly
dismissed  as  “nonsense”  even  in  recent  years  (e.g.  Eberlein  1994).  This  is  the  more
striking  as  there  have  been  many  experimenta l  data  suppor t ing  Terhard t’s  theory
(e.g.  Parncut t,  1989).  It  is  the  purpose  of  this  paper  to  present  a  modified  version  of
Terhard t’s  theory,  which  has  been  tested  in  an  experimental  setting,  and  to
illustra te  its  application  in  three  composit ional  examples  provided  by  the  author.

2 THE DATA

Classical  harmony  theory  (Rameau,  1722)  states  that  the  fundame n ta l  bass  of  the
C- major  and  C- minor  triad  is  c. However,  according  to  the  theory  of  virtual  pitch
there  exists  a  series  of  possible  funda men ta l  basses  to  any  given  chord.  In  case  of
the  C- major  and  C- minor  chord  we  obtain  the  following  data  according  to  the
modified  algorith m  of  virtual  pitch:

For  the  C- major  chord,  we  find  c =  4.37  Hh  (Hh  is  Helmholtz  and  is  the  unit
denoting  the  strength  of  c to  function  as  funda men ta l  bass).  Comparing  this  value
with  all  other  values  of  the  C- major  chord,  we  find  that  c is  the  strongest
fundamen ta l  bass.  However,  the  pitches  f , d , a  ... also  show  some  degree  to  function
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as  funda men ta l  basses,  although  with  diminishing  strength  with  c#  being  the
weakest  (least  suitable  to  be  funda men t al  bass).  Thus,  we  find  that  these  data  seem
not  to  conflict  with  classic  harmony  theory.  However,  the  situa tion  is  changed  if  we
consider  the  C- minor  chord.  Here,  we  find  that  the  pitch  f   (=  3.35  Hh ) is  the
strongest  funda men ta l  bass  and  not  as  expected  c (=  3.02  Hh ). Now,  we  are  so  used
to  hear  the  C- minor  chord  together  with  the  bass  note  c  that  it  might  be  difficult
to  hear  a  C- minor  chord  with  f as  funda men ta l  bass  as  being  more  coherent.  But  if
we try  to  take   a  naive  position  pretending  never  to  have  heard  any  chord,  we  might
find  that  f merges  with  C- minor  better  indeed.  

A  crucial  difference  between  classic  harmony  theory  and  virtual  pitch  is,  that,
although  classic  harmony  theory  underwent  a  developme n t,  it  can  be  applied  to  a
very  limited  amount  of  chords  while  the  theory  of  virtual  pitch  can  applied  to  any
chord.  We give  to  examples:  The  chords  c,  c#,  f#,  which  we  will  call  Webern  triad,
and  the  chord  c, c#,  d , which  we  will  call  Cluster  triad .

The  strongest  tonic  in  both  cases  is  d.  Surprisingly  at  first,  this  seems  even
sensible  referring  back  to  classical  harmony  theory.  The  D- major - 7  is  given  by:  d,
f#,  a,  c  and  the  D- major + 7  is  given  by:  d,  f#,  a,  c#.  Combining  both  chords  and
omitting  the  root  d  and  the  fifth  a,  we  obtain  the  Webern  triad.  Omission  of  the
third  f#  and  the  fifth  a,  results  in  the  cluster  triad.  The  tone  d  is  the  fundame nt al
bass  in  both  cases.  However,  d  is  the  stronger  fundame n ta l  bass  for  the  cluster
triad  (d  =  3.08  Hh)  compared  to  the  Webern  triad  (d  =  2.95).  This  is  one  of  the
factors,  which  leads  to  the  difference  in  sonance.  Sonance,  hereby,  is  the  degree  of
consonance / d i ssona nce  of  a  chord  (related  to  pitch  salience).  A pure  sine  wave  will
fetch  the  value  S =  1  Sh  (Sh  is  short  for  Shouten).  White  noise  will  fetch  the  value  S
=  0  Sh.  The  fact,  that  the  cluster  triad  has  a  higher  sonance  (S =  0.17)  than  the
Webern  triad  (S =  0.158)  means,  that  the  Webern  triad  is  more  noise - like.

3 APPLICATIONS

3.1 Functional  Relationships

For  hundreds  of  years  (since  late  Renaissance)  composers  have  made  use  of
functional  relationships  between  chords.  Of  all  those  relationships  the  ones
between  tonic,  subdo minan t  and  domina nt  are  most  prominen t.  However,  at  the
early  20th  century  most  major  composers  found  the  usage  of  these  chordal
relationships  meaningless  and  banished  then  from  their  composi t ions.  However,  by
referring  to  the  concept  of  virtual  pitch  and  pitch  salience,  we  might  find  that
functional  relationships  can  gain  new  meaning.

The  example  given  is  taken  from  Cyclone  (Hofmann - Engl,  1994).  The  piece  opens
with  e#,  f#  and  b  in  the  right   and  b , d  in  the  left  hand.  The  stronges t  fundame n tal
bass  for  this  chord  is  g  (=  3.07  Hh ) without  being  present  in  the  chord  itself.  In  bar
4  the  piece  moves  to  a  new  center,  which  is  reached  in  bar  5.  The  new  chord
consis ts  of  the  notes:  d ,  a ,  b#,  c#  and  a . Strongest  fundamen ta l  bass  now  is  d   (=
3.24  Hh ). The  subdomina n t  g  leads  to  the  tonic  d . Finally,  in  bar  10  we  reach  the
dominan t  a  on  the  first  beat  followed  by  the  chord:  f#,  e,  a , eb. Although  our  model
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predicts  b  (=  2.77  Hh )  to  be  the  stronges t   and  d  (=  2.76)   to  be  the  second
strongest  fundame n tal  bass,  it  is  likely  that  d  will  be  perceived  as  the  stronges t  in
this  context.  However,  the  sonance  of  the  chord  (S =  0.165)  is  rather  small,  the
progression  from  dominant  to  tonic  will  be  perceived  as  an  imperfect  close  -  the
piece  goes  on.

3.2 Virtual  Tonality

Although  tonality,  as  defined  by  Fétis  (1844)  represent s  nothing  than  the  syntactic
level  of  a  composi t ion  (thus  atonal  music  is  as  tonal  as  classical  tonal  music  is),  it
soon  was  exclusively  used  to  describe  classical  tonality.   The  concept  of  what  we
will  call  virtual  tonali ty  deviates  fundamen ta lly  from  classical  unders ta n ding.

This  time,  the  example  is  taken  form  the  2nd  movement  of  the  5th
piano  sonata  (Hofmann- Engl,  1993):
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Between  bar  8  last  beat  and  bar  10  first  beat,  we  can  observe  a  progression  of  7
chords.  The  bass  line  is:  f#,  e ,  d#,  b , c#,  d#,  b  a  line  which  is  part  of  the  B- major
scale.  The  table  below  lists  the  stronges t  fundamen ta l  bass  for  each  chord  together
with  the  sonance:

The  fundame nt al  basses  of  these  7  chords  form  a  simple  melodic  line  but  do  not
coincide  with  the  bass,  although  they  are  likely  to  be  of  perceptual  relevance.
Further,  the  highest  sonance  is  reached  on  chord  5  (S =  0.498  Sh ). A crescendo  and
the  fact  that  f#  is  the  highest  pitch,  support s  this  developmen t,  thus  dynamics,
melody  and  sonance  are  correlated.

However,  this  is  not  what  establishes  virtual  tonali ty.  In  order  to  determine  the
virtual  tonality  of  the  passage,  we  have  to  compare  the  mean  strengths  of  all
possible  fundamen ta l  basses.  For  instance:  The  strength  of  the  funda men ta l  bass  f#
of  the  first  chord  is  2.4  Hh.  The  strength  of  f#  of  the  second  chord  (not  listed
above)  is  1.71  Hh.   Adding  the  strengths  of  all  fundame n tal  basses  f#  gives  us  9.84
Hh  and  the  mean  1.4  Hh.  However,  computing  the  mean  strength  for  all  possible
fundamen ta l  basses  reveals  that  b  yields  the  highest  mean  with  2.04  Hh.  Thus  b
can  be  considered  to  be  the  tonal  center  of  this  passage.  This  is,  what  is  meant  by
virtual  tonali ty.

3.3 Virtual  modulation

In  classic  harmony  theory  modula tion  refers  to  the  change  of  key  (e.g.  changing  C-
major  to  G- major).  Virtual  modula tion  is  a  concept  whereby  the  relationship
between  two  possible  fundamen ta l  basses  is  systemat ically  changed.  This  time,  the
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example  is  taken  form  Abstract  I  (Hofmann - Engl,  1992)  3rd  movement:

Without  considering  the  theory  of  virtual  pitch,  we  can  see  that  the  first  chord  has
the  fundame n ta l  bass  c, while  the  last  chord  has  the  funda men ta l  bass  eb. However,
the  question  remains  what  happens  in  between.  The  strengths  of  the  funda men ta l
basses  c and  eb over  the  chord  sequence  are  plotted  in  the  graph.

We find  that  the  strength  of  c  increases  while  the  strength  of  eb decreases,  both  in
form  of  a  wavy  line.  The  sequence  of  the  stronges t  fundame n tal  basses  (c,  c,  g ,  eb,
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b b,  eb,  eb,  eb)  confirms  that  a  virtual  modula tion  occurred  using  the  mediant
relationship  between  g  and  eb.  We  are  familiar  with  these  kind  of  results,  the
method,  however,  is  new.

4 THE ALGORITHM

The  algorithm  is,  as  mentioned,  earlier,  based  on  the  concept  of  virtual  pitch.  We
will  outline   this  concept  and  explain  some  aspects  of  the  algorithm.

Principal  idea  is,  if  we  take  the  tone  c for  instance,  this  c could  be  part
of various  overtone - serieses  c is  part  of  the  overtone - series  based  on  c.
Further,  the  overtone - series  of  f   includes  c,  so  does  a b,  d ,  b b and  d b.
Based  on  various  arguments  as  put  forward  by  C.  Stumpf  (1965)  E.
Terhardt  (1982)   c is  the  strongest  virtual  pitch  to  c,  the  second
strongest  virtual  pitch  is  f  and  so  on.  In  general,  we  obtain  six
candidates,  which  could  serve  as  virtual  pitches  to  any  given  tone.
These  are:  The  tone  itself,  the  fifth  down,  the  major  third  down,  the
minor  seventh  down,  the  major  second  down  and   the  major  seventh
down.  The  strengths  decreases  in  this  order.

Precisely,  this  system  is  to  be  used  for  chords.  For  each  tone  of  a  given  chord,  we
write  its  virtual  pitches  in  a  column.  In  the  instance  of  the  C- major  chord  we
obtain  the  table  below:

In  the  first  column,  we  find  the  virtual  pitches  for  c,  in  the  second  column  the
pitches  for  e  and  the  pitches  for  g  in  the  third  column.  The  last  column  (value  b )
gives  each  virtual  pitch  a  value  (a  pitch  not  listed  in  a  column  gets  the  values  6).
However,  early  experiments  (Hofmann - Engl,  1990)  showed  that  the  value  b  as  such
is  not  suitable  to  estimate  the  strength  of  a  candida te.  The  strength  can  be
estimated  by  the  formula:

where  g  =  6  and  b (c) is  the  value  of  a  candidate  as  shown  in  the  table  above
and  S(c) is  the  strength  of  the  candida te.

According  to  this  formula   the  strength  of  the  candidates  is  as  follows  (from  1  to
6): 6  Hh,  5.83  Hh , 5  Hh , 4.5  Hh , 3.3  Hh  and  1.83  Hh  (Hh   is  short  for  Helmholtz).  A
candida te  not  listed  gets  0  Hh .

Considering  the  table  again,  we  find  that  all  tones  c,  e  and  g  suppor t  the  virtual
pitch  c as  candida tes  1,  3  and  2 with  the  mean  5.2  Hh . However,  the  tones  c, e  and  g
(candidates  2,  6  and  5)  also  suppor t  the  virtual  pitch  f.  Thus  we  get  the  smaller
mean  3.7  Hh . Hence,  we  assume  that  c is  a  stronger  fundamen ta l  bass  then  f . 

If  we  intend   to  determine  the   strength  of  a  fundame n tal  bass  (=  virtual  pitch)  in
general,  we  have  to  consider  one  more  factor.   The  lower  a  tone  within  a  chord,  the
stronger  its  impact  on  the  fundame nta l  bass.  Thus,  for  instance,  the  interval  c,  g
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support s  the  virtual  pitch  c more  then  does  the  interval  g , c. The  position  of  a  tone
within  a  chord  will  be  taken  into  account  by  (1/ i)1/2 . Thus  we  get:

where  S(p ) is  the  strength  of  the  pitch  p  to  be  funda me n tal  bass  of  the  chord
consis ting  of   n  tones,  i the  place  of  the  tone  within  the  chord  (with  the
lowest  tone  at  place  1  up  to  the  highest  tone  at  place  n ), g  =  6  Hh.  and  b i(p ) is
the  value  of  the  candidate  of  the  tone  t i within  the  chord  at  place  i.

Applying  this  formula  to  the  C- major  chord  we  obtain  the  strength  of  c as

fundamen ta l  bass:  [(6 2 -  0 2)*1/1 0.5 +  (6 2 -  2 2)*1/2  0.5+  (6 2 -  1 2)*1/3 0.5]/ (3*6)  =  4.38.
This  is  the  number  as  stated  earlier.

The  formula  for  the  calculation  of  the  sonance  is  more  complex  and  partly  a  resul t
of  the  input  of  experimental  data.  However,  there  are  two  major  factors,  which
determine  its  shape.  Firstly,  the  assump t ion  is,  that  the  stronger  the  stronges t
fundamen ta l  bass,  the  higher  the  degree  of  sonance  and  secondly,  the  more  virtual
pitches  a  chord  suppor t s  the  smaller  the  degree  of  the  sonance.  The  formula  is:

where  S(ch ) is  the  sonance  of  the  given  chord,  n  the  amount  of  tones  of  the
chord,  i the  place  of  a  tone  within  the  chord,  k  =  6  Hh / Sh , m  the  amount  of
virtual  pitches  of  the  chord,  S(p )max the  strength  of  the  strongest  virtual  pitch,
S(p )j the  strength  of  the  jth  virtual  pitch  and  cp =  0.224  (the  maximal  possible
strength  of  a  virtual  pitch  in  percentage).

Now,  we  are  able  to  calculate  the  sonance  for  the  C- major  chord:  S(p )max  =  4.37  Hh ,
m  =  11,  n   =  3,  the  sum  of  all  S(p )j is   20.39,  the  sum  of  (1/ i)0.5 is  2.3,  thus  we  get  S
(ch ) =  3/2.3*4.37 /(6  +  121/6*(1  -  (4.37/20.39) /0.224) 2) =  0.465  Sh  as  stated  before.

5 THE EXPERIMENTAL BACK- UP OF THE ALGORITHM

It  is  impossible  to  summarize  the  exact  experiment  design,  procedure
and  results.  However,  the  correlation  between  predictions  based  on  the
algorithms  has  been  shown  (Hofmann- Engl,  990)  to  be  89  % (p <  0.001)
for  the  algorithm  on  virtual  pitch  and  83% (p <  0.001)  for  the  algorithm
on  sonance.  The  experiment  was  conducted  over  a  sample  of  73
participants  including  high  school  students,  undergraduate  music
students  and  postgraduate  music  students.  It is  interesting  to  note  that
the  algorithm  failed  where  minor  thirds  have  been  involved  (listeners
overestimate  the  sonance  of minor  thirds).
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