
Using DirectCsound,
a realtime- oriented version of Csound

Gabriel Maldonado
Fantalogica association,

g.maldonado@tiscalinet.it
via di Donna Olimpia 166

00152 - Rome - Italy

Abstract
This paper concerns the well- known sound - synthesis
language Csound. Some additions have been made in
order to use Csound in real- time. These additions allow
a live control of the synthesis process with the Windows
operating system. The aim is to give the user a powerful
and low- cost workstation to produce new sounds and
new music interactively and also to make live
performances. Try to imagine Csound being a universal
musical instrument.

1 WHY REAL- TIME?

Csound is one of the most famous sound - synthesis languages. At
the beginning of the ‘90s its author, Berry Vercoe, has added some
MIDI oriented opcodes to use it in real - time. At that time the only
machines capable to run Csound in real- time, were the Silicon
Graphics and some other expensive UNIX workstations. Some years
later the Intel - based PCs became fast enough to run Csound in real-
time, but at first they were capable to accomplish this task only
under the LINUX OS, and without any MIDI support. DOS and
Windows were rigorously kept off the real- time dream.

Now low- latency AUDIO support, MIDI support and many MIDI
opcodes have been implemented under Windows, to allow the user
to control Csound as it could be a sort of musical instrument.

What is the difference in using Csound in real- time rather than
using it in deferred - time? For what reason should a composer
prefer to use it in real - time? The more trivial reason is that running
Csound redirecting its output to the audio- DACs (instead of writing
the output on a file) saves both space on the hard - disk and time to

listen to the result; it can be quite useful when composing a piece,
because normally a lot of tests are necessary to achieve the
composer expectations. In this case real- time is not essential, it is
only more convenient.

But there are cases in which real- time is indispensable. What about
if a composer decides to make a piece in which some musical
parameters are fixed, but other ones are modifiable during the
performance? And if he wants to control a MIDI synthesiser by
means of his favourite Csound algorithm or pitch tables? And if a
performer needs a synthesiser capable of completely new synthesis
methods, which aren’t implemented in any hardware synths yet?
Real- time becomes also necessary when some non- intuitive
parameters of the composition need to be defined accurately by
means of the composer’s ears.

2 INITIALISATION PARAMETERS AND CONTINUOUS PARAMETERS FROM THE

REAL- TIME POINT OF VIEW

Time

a. b.

c.

Figure 1

In Csound there are three kinds of signals: i- rate (initialisation
stage variables), k- rate (control rate variables) and a- rate (audio
rate variables) signals.

k- rate and a- rate signals can be considered continuous from
the user point of view. This means that these two kinds of signals
can be thought as slanting - straight lines or curves (Fig.1 a,b,c).

k- rate signals are normally used to control the behaviour of a
generator unit or a modifier unit. Sometimes it is recommended to
use a- rate for control signals too, for example when the amplitude

envelope of an audio generator has got fast transients, or when an
LFO must control a flanger delay. In these cases audible distortion
occurs if k- rate is used, so it is necessary to use a- rate .
On the other hand, i- rate values cannot be considered exactly as
signals. In fact they remain constant for the entire duration of a
Csound note event. If one imagined them in a graph, he could think
them as a stepped picture (Fig.2). Each step refers to an i- statement
of Csound score or to a note- on MIDI message recognised by the
MIDI IN port.

Time

(*) (*) (*) (*) (*)(*) (*) (*) (*)

(*) MIDI note-on events or score's i-statements

Figure 2

i- rate, k- rate and a- rate signals can be considered in two different
ways from Csound instruments point of view: internally- generated
and externally- received. For example, Csound score p- fields are
externally- received i- rate values, because they are not defined
inside the instrument block, but externally, in the score.

Global k- rate and a- rate signals are internally - generated by an
instrument, but they can be considered as externally- received from
the target - instruments point of view. Obviously incoming MIDI
control - change messages are externally- received signals. Signals
sent to the MIDI OUT port are internally- generated.

Externally- received k- rate signals will be named continuous
parameters , and externally- received i- rate values init para meters .
a- rate signals will not be taken into account, because normally they
are not used as real - time control signals, but they are as audio
signals. So it is possible to draw a table:

SIGNALS Init

value

s

Control

signals

Audio

signals

Continuou

s

parameter

s

Init

param.

MIDI

inpu

t

MIDI

outpu

t

i-

rate

yes yes

internally

generated

k-

rate

yes yes

a-

rate

sometime

s 1

yes

i-

rate

yes yes 2 yes 2

externally

received

k-

rate

yes yes 2 yes 2

a-

rate

yes

note 1 : sometimes a- rate signals are used to control the amplitude envelope of an
audio generator to avoid distortion in fast transients when k- rate is very low.

note 2 : signals received by the MIDI- input opcodes operate at i- rate and k- rate.
Note- on messages are init - parameters. Control - change, aftertouch and pitch- bend

messages are continuous parameters.

Notice that signals received by the MIDI- input opcodes operate at i-
rate and k- rate . Note- on messages are init- parameters , whereas
control - change, aftertouch and pitch - bend messages are continuous
parameters .

3 SA AND MA INSTRUMENTS

A running instance of a Csound - orchestra’s instrument can be
activated in two ways: by the score and by a MIDI note - on message.
So there are two kinds of instruments:

• SA instruments (Score Activated instruments)
• MA instruments (MIDI Activated instruments)

MA and SA instruments can coexist in the same Csound orchestra. If
an orchestra contains only MA instruments, and function tables are
not used (for example when using the ‘pluck’ opcode to produce the
sound), a Csound score could be an almost empty file. In that case,
the only statement which must be present in the score is the f0
statement, followed by the action time (which must be equal to the

total duration of the performance). This statement is required to
avoid a zero - seconds duration of the real- time session.

MA instruments can contain the following Csound opcodes
(whereas SA instruments cannot):

notnum, veloc, cpsmidi, cpsmidib, cpsmidib, octmidi, octmidib,
octmidib, pchmidi, pchmidib, pchmidib, ampmidi, aftouch,
chpress, pchbend, midictrl, midictrl, midictrlsc, imidic7, midic7,
imidic14, midic14, imidic21, midic21

Notice that none of these opcode contains MIDI channel as an
argument. If one of these opcodes is included into an SA
instrument , unpredictable errors could occur.

In most cases the midi - channel number of a note - on or control -
change message is the same as the instr number to be activated,
however they can be reassigned by means of the massign opcode. If
massign is not used, MA instruments must be numbered 1 to 16.

As in the following MIDI- oriented opcodes an input argument with
MIDI channel information is present, they can be used in SA
instruments :

ictrl7, ctrl7, ictrl14, ctrl14, ictrl21, ctrl21, chanctrl, chanctrl,
initc7, initc14, initc21, slider8, slider16, slider8f, slider16f,
islider8, islider16.

SA and MA instruments can cooperate in the same orchestra. For
example, an SA instrument can contain several instances of ‘ctrl7’
opcode, each one defining a different continuous- parameter. Each
parameter is stored in a global variable. So the corresponding
continuous- parameter is shared by all the instances of the MA
instrument. It is a sort of sending / receiving process inside the same
Csound orchestra: performer actions are received by the MIDI- IN
port; an SA instrument containing some midi opcodes transforms
these messages in global variables; these global variables (which are
the actual continuous- parameters) are read by an MA instrument. In
this case, the SA- instrument - instance’s life begins at the start of
Csound and lasts all the duration of the real- time session, whereas
MA- instrument - instances’s action - times and durations depend on
the performer’s actions.

There are at least four ways to use Csound in real- time. Next
paragraph will deal with them.

4 FOUR DIFFERENT WAYS TO USE CSOUND IN REAL- TIME

The first way can be considered as the most trivial one. A normal
orchestra contains only SA instruments and no parameters are
modified during the performance, because all the informations are
contained in the orchestra / score pair. No MIDI opcodes are used in
this case, and sound output is identical to that of the wave- file
produced by running a deferred - time Csound session with the same
orchestra / score pair. This way can be useful to reduce the waiting
time of wave- file processing and to eliminate the necessity of a big
hard - disk storage space, but in every respect this method is
identical to deferred - time by the hearing point of view.

The second way is the opposite to the first. According to this way, it
is possible to consider Csound a MIDI synthesiser (the most
powerful synth in the world!). This synth can be connected to a MIDI
master - keyboard for a piano- like performance; furthermore it is
possible to play Csound with controllers different from a piano
keyboard, such as wind controllers, guitar controllers, drum
controllers etc. In this case no p- fields are present in the score. All
the init and continuous parameters are received via MIDI. Each note
is activated by a MIDI note- on message and deactivated by a note-
off message. So init parameters are defined by the informations
contained in a note- on message: the orchestra instrument number
is selected by the MIDI channel, the MIDI note - number and the
velocity can be used to set two additional init parameters (this task
can be accomplished by using the notnum, cpsmidi, octmidi,
pchmidi, veloc and ampmidi opcodes) . Other init parameters can be
set by sampling and holding the current status of Csound controller
array at the instr initialisation stage (this task can be accomplished
by using imidic7, imidic14, imidic21, ictrl7, ictrl14, ictrl21, islider8,
islider16, islider32, islider64, is16b14 and is32b14 opcodes in an MA
instrument). It is suggested to use a MIDI mixer or the VMCI
program (see below for more informations on it) to control a
controllers bank. It is possible to use VMCI as a synth - editor for
Csound by designing an instrument with a big number of init - rate
controller opcodes, each one defining a particular patch - parameter.
For example, the amplitude envelope ADSR durations and levels of
an instrument can be assigned to a bank of sliders. So a Csound
instrument can be considered as the type of synth - algorithm used,
in which each slider configuration (when using VMCI this
configuration can be saved on disk) becomes the particular synth -
patch that can be edited according to user taste. Continuous

parameters can be modified via MIDI by gestural actions of the
performer by means of devices such as control - sliders, modulation -
wheels, breath - controls, pitch - wheels, aftertouch etc. (the opcodes
implemented to accomplish these tasks are: aftouch, chpress,
pchbend, midictrl, midictrlsc, midic7, midic14, midic21, ctrl7, ctrl14,
ctrl21, slider8, slider16, slider32, slider64, slider8f, slider16f,
slider32f, slider64f, s16b14 and s32b14) .

The third way to use Csound in real- time is joining SA instruments
to some parameters which are modifiable in real - time by a MIDI
controller during the score performance. In this case each note has
its p- fields already defined in the score, but there can be some
additional init or continuous parameters that can be modified at
performance time. The action - time and the duration of each note
are fixed, but the metronomic speed of the performance can be
changed in real - time by the user. Any kind of parameter can be
assigned to a live controller. This can enrich the concert
performances: each time the composition will acquire a new flavour,
it will never be exactly the same.

The fourth way to use Csound reminds us a little the old and cheap
Casio keyboards “one- key- play ” mode. In this mode, note - on
messages are used to trigger the note - events, that are pulled out
from a queue of note - parameter blocks stored into a table, i.e. all
the init- parameters of each note have to be stored into a table.
Note- off messages are used to deactivate a playing note.
Overlapping notes, as well as polyphony are allowed. All the init
parameters used in a conventional SA instrument can be ported to a
real- time activated instrument (MA instrument) when using this
method. I like to play Csound in this way very much, because it is
possible to define a lot of very precise parameters for each note, but
the activation time and the duration of each note is decided by the
performer at performance time. This enables the user to control all
these interpretative nuances of time such as ritardando and
accelerando , very difficult to define with precision at the score -
design time. Also, two additional init - values can be used to control
any kind of parameter; these values are obtained by the note -
number and the velocity of each note played at performance time. A
section of an SA instrument of a standard score can be easily
converted to be used with the “one- key- play ” mode. The new GEN
23 function - table generator subroutine, which reads numeric values
from an external ASCII file, can be used to do this job.

5 NEW FEATURES IMPLEMENTED IN THIS VERSION OF CSOUND

The main features added to this Windows version of Csound are:

• Real- time audio input and audio output in parallel, before
available only in UNIX platforms (now the DirectSound API
functions enable a very low latency to audio output, giving
the performer a short time response for gestural actions).

• Real- time MIDI IN and MIDI OUT (new feature).
• Command line oriented real- time output (before

implemented only in UNIX platforms).
• Hard- disk recording of the real- time audio output in the

same machine (completely new feature).
• Several real - time- oriented opcodes.

6 DEMONSTRATION EXAMPLES

In this demo the following examples in real - time will be presented:

1 A polyphonic pitch- shifter.
2 A granular synthesis example with real- time control of all
the most important parameters.
3 A MIDI delay with variable tap.
4 Sending a flow of several data to the MIDI out port.
5 Using real- time MIDI in to edit a Csound - patch.
6 SA (Score Activated) instruments Vs. MA (Midi Activated)
instruments.

7 SOME UTILITY PROGRAMS

Also in the demo two GUI oriented programs to be run in parallel
with Csound will be presented:

• WCSHELL (by Riccardo Bianchini), is a shell for running
Csound with the needed parameters.

• VMCI (Virtual Midi Control Interface by Gabriel Maldonado), is
a set of virtual sliders and a virtual MIDI keyboard for
controlling Csound in real- time without any external MIDI
device.

8 FURTHER HELP

More information about Csound and the free executables of the
programs can be got from my web site: http:/ / web.tiscalinet.it /G-
Maldonado /ho me 2.htm

