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Abstract

: is €i tion -

Current approaches to musical research place a spt'png :gg)ehlas\sxsi ﬂg‘g\ :éloiog:gcgg&u; lon-
i ithmic composition - or on cognitive - ¢
RA alg(;:;xu hirfgca cé)mmon ground we outline a framework whe(rle mltles:lcla(l shm:ct:lr)e
way 0 Sufme(g bygthe interaction of three inter-dependent aspects: Sol‘:ll:k .;yg amIi)c asllly an(i
o detern?\alln system (psychological) and social system. These are inter ok fz rm;’?ion ally and
percep! Zon covides a transformation of the state of each system. Ini¢ mation s dfined
g‘; l{hl:tfar?\;é an% rate of transformation of the eleg;ems inortlh(; p%ﬁzlcp rots)zbility’ heing
iodici the two opposing factors that ac . ]

pe:c?gf;gfoarxﬁaggg?%l be processed and transmitted by the perceptual system defines its
§ o
stp;\te.We view each musical syntax as a sub-set

of a greater system that includes the different
forms of western music, defining observation in

three levels: sound, sym?hx a‘rllld
i the probability that the
ut of the model - which dgpends on the ity ¢
moqt))?x?z:(t)i%i‘ orgk:geﬁ;':ls:r?tqs)tates will allow the processing of a given information - should
com
provide a way to observe an

d compare the reaction of systems to the content of various
musical phenomena.

Introduction

.
T 1 QlIOW! lin i P! ented by sporadlc works that try to gal f
The app; oach taken in this paper follows a lin¢ that is re] (xes. ) : ’ Lhex,

i i ical interdisciplinary ground  Foomalise such 4
diversified fields in a common music . B e e meed (o dofin an
Georgescu & Georgescu, 1990; Moles,1969; Malt, 1994) ltgies he mecd 10 e mmber the useful tools

i i out by many researchers the difficu ‘ T : Siobodn 1989)
per§{>e&texvfe;olﬁsel;zgnﬁ%%n(tggegman)j 1990; Ferneda et al, 1994; Harnald, 1987; Pamcuti,
availal

i towards unification; a tradition in the .
i mentioned regarding the slow process e epose
SQ two malr:l r:::issot?cs ccminity 1o separate and fragment areas of @‘?Wleggfgagri()l the dang
scxentlﬂ.c an ts developed in one field to another (Roederer, 1975; Vriend, h mu.sical objocts focusing on.
e con(ciedgesses the problem of constructing a framework. to deal vx(zlx s oo Kot oave.
O}H T at and excluding actual implementation issues. This is baseailmtl)le et B b bwior of
meorgn%ael asngnzd in a large volume of publications and there is softwafe a\;n dap e ok, simulation of
s o - i.e. neural networks for pitch processing X asks, sitation 0%
some parts Of mﬁ pr‘;?: Seglzy?(t;nt;le xi,liase space, calculation of entropy, represlegngtf\‘floMna(:fa:;gxlxglgs;x} e
?r:zzfl?éyb?ilz)?;:\?;\, cogglaﬁon e s tne o etaila'l’rlltgfge(;;tu];:ls)\alnlgvtﬁeir the,oretical implica{ions in an
; discuss the most salie i ns n A
1?f8 5; Tog:i »‘er ;‘ glyébﬁglghf rl\](l)lts c‘:;;plete - picture and to underline conceptual weakness of parts of a
o hose dolil ) future research. ) music
ot e ) be' mg\rlggne%rtgglrfl?md fields have proven to be very useful for thetunfdgrsétalrrl\(ilé:ig s(; e
i A 21(131 r?%afz ready-to-use tool (Roederer,1975). ?herefore when thg cli)r:]cizg 0(} reZInmusicm A
theylicilln::)():rrfsic tﬁe characteristics of the system should be 1fnferred‘ i:l)rsy;]::m (:,) raany o eaton o he ysterte
bofore i lusion about the behavior of a music : non et
o W?f Cﬂgﬁgﬁiﬁﬁz ?19;1:1 lils why we do not adhere to a o:le-su.ied pl;);silrcle(\:lu;)ri siﬁtxgﬁim ol tpdon't
of a specific . i s
Follogzing the same line of thought, an early mathematical form(Knopoff e Son 1081; Georgescy %

i ictability of musical phenomena B S0
gt e compllg)g(ggf\;nedbgﬁgzd‘xgglﬁ ;sya step that should eventually be taken when many of the posed (
eorgescl, .

the ones not considered!) conceptual problems have been discussed and clarified.
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At that stage, confirmation bias - the fact that the observer actively searches for evidence that supports his
beliefs - and the complementarity principle - which states that observation depends on choices made by the
observer, should have been introduced (Mitroff, 1974; Wemer & Wells, 1990; Wolf, 1981). The whole
musical process could be divided in three interlinked subsystems: sound system, perceptual system and social
system. This subdivision comes out from the trends observed in musical research, where this areas can be Clearly
distinguished in relation to their methodology and object of study - i.e. signal processing, psychology of
perception, developmental psychology (Deutsch, 1982; Flanagan, 1972; Hargreaves, 1948; Kubovy &
Pomerantz, 1981; Oppenheim & Schafer, 1975; Pierce, 1983; Prince, 1972).

The sound system is defined as a time series - variations of a chosen variable as a function of time - that is,
the unfolding of a sequence of acoustical signals (Boon et al, 1990). Information provided by the sound system
is processed by a perceptual system whose dynamics are described by its states - or representations - which are
modified by processes - or operations. Global constrains - established by the social system - set the range of

possible perceptual states and thus the probability that the whole musical process will take place in a specified
way.

Representation

From a philosophical point of view two main approaches can be traced regarding the process of knowledge
acquisition. They are conceptually opposed but complementary in their application: elementism, that proposes
an interaction of units or elements which combine in complexes to form perceptual objects, ideas, etc.;
symbolism, that establishes direct acquisition of complex structures - symbols - which are related hierarchically
to form new concepts or perceptual objects (Lischka, 1991; Marsden & Polple, 1989; Massaro & Cowan, 1993;
Rock, 1984; Wertheimer, 1974),

The existing wide spectrum of proposals on representation mechanisms range from logic-rules to complete
absence of representation (Lischka, 1991; Pylyshyn,1984; Suppes et al, 1994). No conclusive general results
have been attained on the mental mechanisms activated by auditory stimuli, but some factors should be
considered when treating specifically musical phenomena. We'll discuss some issues related to three perspectives:
analytical, computational and psychological,

Psychological perspective

The traditional approaches in psychology of perception placed a strong emphasis on detection of thresholds
(Zwicker et al, 1957; Luce & Clark, 1967; Roederer, 1974), Since the mid-sixties with the apparition of Signal
Detection Theory a shift in paradigm called attention to the fact that the transmission and processing of
information could be better understood by probability weights (McNicol, 1972; Garner, 1974; Green, 1988;
Green, 1972; Green & Berg, 1991; Green & Swets, 1966; Green et al, 1984; Green et al; 1985; Lufti; 1992).
Concepts as just-noticeable-difference were lIeft aside (it is strange that in the music field this is still cited and
used).

Springing from the pioncer works in Information Theory (Shannon, 1948; Coons & Kraehenbuel, 1958;
Knopoff & Hutchingson, 1981; Knopoff & Hutchingson, 1983), but evolving to its own conceptual field,
Information Processing (IP) has become one of the most influential paradigms in psychology (Massaro &
Cowan, 1993; Suppes et al, 1994). The most general properties of IP are: Informational description: all
environmental and mental processes can be described in terms of type and amount of information. Recursive
decomposition: each stage of processing can be broken down into substages. Flow continuity: information is
transmitted forward in time. Flow dynamics: each stage or operation takes time - there are no instantaneous
mental processes. Physical embodiment: information processing occurs in a physical system. At last,
coincidentally with the approach of this paper, IP establishes that information is embedded in states of a system
- Or representations -, and processes - or operations - are used to transform these representations.

An important distinction formulated by IP is that data should not be treated as information until it is
processed by the receiver, From this point of view knowledge should be understood as information actually
available by the individual and not the raw data present in the environment (Massaro & Cowan, 1993). A

separation between physical (previous to mental processing) and psychological systems seems the simplest way
to deal with this issue.

Rule-based models

Several limitations have been pointed out regarding the approaches based on linguistic analogy
(Cook,1994; Leman, 1989; Todd & Loy, 1991; Remez et al, 1994). Taking in count the characteristics of
musical material, continuous representations which allow for decisions based on probability weights
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Perceptual system

When the sound system is observed, an arbitrary portion of information is extracted so that there is a loss
in the transmission between the actual physical system and its perceptual representation (Berstein & Green,
1987; Dowling, 1994: Durlach et al, 1986; Mason et al, 1984; Nielzen & Olsson, 1989; Yost & Watson,
1986). This loss can be represented by 2 dynamic information filter whose characteristic are defined by the state

of the perceptual system.

Fusion or parsing can be thought as a high level process - that acts on other processes -. If we consider
how psychoacoustical ‘models process spectral information, clues such as harmonicity, synchronicity, spacing of
components, modulation will define if the sound is perceived as a unit (Feth, 1974; Green, 1988; McAdams,
1982; Richards et al, 1989; Sano & Jenkins, 1991 Slawson, 1985; Terhardt et al, 1982; Vos & Rasch, 1982).
Regarding musical syntax, pitch-height, pitch-class and interval representation - as in Bharucha's model (1991) -
depend on synthetic or analytic hearing, in other words whether a fusion process is activated or not (Howe et al,
1993; Melara & Marks, 1990a; Melara & Marks, 1990b; Melara & Marks, 1990c; Singh,1987).

‘At the time data reaches the information filter, it is parsed among available channels (Grossman, 1972).
Depending on the range of the signal and its rate of transformation, the pandwidth and resolution of each channel
is set. If their capacity is exceeded the fusion proces:

< is activated, then the number of channels is reduced and so
is their resolution. The settings of the filter are stored in a buffer which accounts for the memory of the state of
the perceptual system.

Social System

From a musical perspective the constrains imposed by the social system are mirrored in what a listener has
as his musical background: all musical stimuli that he receives and how they are stored and used by him in
specific tasks, i.e. producing and listening to sound (Hargreaves,1948; Prince,1972; Siegel, 1981; Sloboda,
1985). Environmental constrains are always present in production of music. Even when implementing automatic
generation of random sound the limits are set by the sample space: only an infinite sample is completely

random.
A variety of listening experiments has shown the influence of cultural context on the perception of music -
(Deliege, 1989; Jones, 1987; Krumbansl, 1990; Parncuit, 1989; Wolpert,1990). Actually an important question

in experimental research has been the problem of individualizing the variables that are acquired from interaction
with the environment and the ones that are innate(Aiello,1994; Deutsch,1982; Krumhansl, 1990; Roederer,
1974). Although this differentiation is relevant, while enough data is not available the alternative approach of
taking cultural constrains as given data may prove useful. The other aspect of the same problem is the

interaction between environment and individual, thought as & feedback process where the action of each social
component modifies the environment - as it is the case in musical production -. This has not yet been formalized
either. Therefore we propose that the modifications infringed on the environment be incorporated as a feedback
loop for each iteration among systems.
When analysing the behavior of a social system, the global features that characterize its dynamics are

observed. Each specific event looses importance and the statistical distribution of a large number of events 18
focused. While in state of equilibrium the system favors the features that have the higher activation weight!
‘When this features are outweighed by repeated exposure o contrasting stimuli, the equilibrium of the system is
broken and a new state is reached.

Neural networks have the ability to learn pattems and features from a given set of musical examples (T odd
& Loy, 1991). So the application of this knowledge is straight forward: feed the network with a relevant corpus
of musical stimuli, extract the features that characterize them and use these features to set the Yimits of possible

behaviors of the perceptual system.

Conclusion

¢ surface of the implications of amodel that brings together physical, perceptual
cal framework. The division of the sound system in three levels - sound, syntax
types of information without fragmenting the music
tability of the sound system allow for predictions on

We have only scratched th
and social information t0 8 musi
and morphology - provides a way 10 treat different
structure. Entropy and periodicity used to define the s
behavior. Fusion-parsing as a high level process acting on information selection simplifies the structure 0
perceptual mechanisms. Constrains defined by the social system contextualize the musical process in 2 specifl
environment. Further development of this line of research should introduce attractors and control parameters
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Procedure

Establish a kernel [ sound - -
otabl syntax - morphology ].
Establish domain [ time - frequency ].
Apply transformation [ correlation ].
Find the range [ minimum - maximum].
PDloft_ a static representation [ system].
efine sub-range. (In case of processes undi
o paramete S ey er perceptual threshold, phase - in periodic signals - could be
P;ot a time-varying representation [ states ].
Find the process underlying the dynamics of the system.

Syntax.
lgeed signal 1.
stablish domain [ duration - i ity - pi
Apply correlation [within. intensity - pheh ]
Find range.
Plot static representation [system ].
Define §ub-range [perceptive unit ].
P}ot a time-varying representation [states].
Find the process underlying the dynamics of the system

gzed signal 2.

tablish domain [ duration - i ity - pi

Apply correlation [witbin. ineensity - pheh ]

Find range.

Plot static representation [system ].

Define §ub-range [perceptive unit ].

P}ot a time-varying representation [states].

Find the process underlying the dynamics of the system

Feed signals 1 and 2.

Apply correlation between.

Find range.

Plot static representation.

Define §ub-range [perceptive unit].

P}ot a time-varying representation [ states ].

Find the process underlying the dynamics of the system

Morphology.

Ii;tg});lzl(:) 32;:31; [[infon(rilation distribution (range and rate of transformation)]
sound: time - fi : i i i :

o e hologine requency ][ syntax: duration - pitch - intensity ].

Per
Establish variable [ sound - s

- syntax - morphol
Observe Garner effect - interactions. rplolosy )
Input stage [ temporal clues - spectral clues 1.

Transformational stage [ fusion - i
B o] ge [ fusion - parsing ][ fit pattern ][ map to representation ] [dynamic information




XV Congresso da Sociedade Brasileira de Computagado

254

Qutput stage {feedback][fuzzy decodification].
Compare input and output,

inati icl.
stage [ dominating corpus of musi o
}rnrglxlltsforxg}xaﬁon stage [ statistical weight to strong acuv:::lmnsst]e.m ]
Output stage [ relevant features ][ constrains 10 perceptual sy .
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