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Abstract
This paper proposes a knowledge representation of thythmic patterns, and a neural model to seg-
ment musical pieces in accordance with three cases of thythmic segmentation. The neural model has
a topology which is identical to that of NETtalk (Sejnowski & Rosenberg, 1987). It is trained on sets
of contrived patterns, and evaluated on two two-part inventions, two three-part inventions, and two
fugues of Bach (Bach, 1970, 1989).
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1 Introduction
1 2 3 4 5 6 7 8 9

Due to memory constraints, it is believed that listeners do not grasp 2 musical piece in its entirety, but
on the contrary, they segment it into parts which can be analysed, and then later related to each other
(Drake & Palmer, 1993). Studies of segmentation of nonmusical sound sequences (Gabrielsson, 1973,
Garner & Gottwald, 1968) as well as of musical sequences (Drake & Palmer, 1993; Lerdahl & J ackendoff,
1983; Kirkpatrick, 1984) suggest that the Gestalt principles of proximity and similarity may be the ba-
sis on which listeners segment music. Based on such principles, severa} researchers have proposed three
cases of thythmic segmentation: longer durations (Drake & Paimer, 1993; Lerdahl & Jackendoff, 1983),
pauses (Drake & Palmer, 1993; Lerdahl & Jackendoff, 1983), and breaks of similarity (Lerdahl & J ack-
endoff, 1983; Kirkpatrick, 1984).

A neural model is proposed here to segment musical pieces in accordance with the three cases of seg-
mentation. The topology of the model is identical to that of NETtalk (Sejnowski & Rosenberg, 1987).
In the next sections, details are given of the three cases of segmentation. A novel knowledge representa-
tion for rhythmic sequences is introduced, along with details of the model. Finally, results of three ex-
periments are presented — one for each case of segmentation.

Figure 2: A musical sequence lasting nine TICs
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2 Three cases of rhythmic segmentation

We have considered as an example of longer durations the case when given four notes ninanan4, the du-
ration of ny is greater than the durations of ny and n3. Again, given four notes ninanang, We have con-

sidered as an example of segmentation given by a pause when there is at least one pause between nz and Input L
ns. Finally, we have considered as an example of breaks of similarity the case when given eight notes put Layer oo OO LELE oo OO
niNaNaNaNENENTNS; the durations of ni, nz, 73, T4 aI€ identical, the durations of ng, ne, N7, Ng are also
identical, and the durations of the first four notes are different from the last four. Figure 1 illustrates the / \
three cases.
Rhythmic Pattern

3 Knowledge representation for rhythmic sequences Figure 3: The model

Th ivati i i i
e activation a; of each hidden unit 7 is given by the sigmoid function

If we set the small figure in a musical sequence (or in a whole piece) to be the time interval (TI), all
other figures become multiples of TIL. For example, if TI is an eighth note, a quarter note lasts two Tls, & 1

Qp == ——
* 14 emnets 1
m

net; is given by




XV Congresso da Sociedade Brasilgira de Computagdo II Simpésio Brasileiro de Computagio e Msica 117

116

11 10 11 10 10 10 00 00 11

they are placed in different clusters. Therefore, the internal representations in the hidden units make a

Figure 4: Representation for the sequence in figure 2 distinction between the two types of patterns. .
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where w; is the weight from input unit j to hidden unit i, a; is the activation of input unit j, and bias; § 0 - 1
is a special weight which adjusts the values of net; to make an efficient use of the treshold of the sigmoid; 2 05 3 3
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where w;; is the weight from hidden unit j to output unit 7, a; is the activation of hidden unit j, and

bias; is again a special weight!.
The weights are updated according to the generalized delta rule (Rumelhart, Hinton, & McClelland

1986),

Figure 5: The two first principal components of the negative patterns in the first experiment
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where «, 8 € (0,1) are the learning rate 'and momentum respectively. The subscript p indexes the pat- a. 0.5 - 3
tern number, and the learning takes place on & pattern-by-pattern basis. Both the learning rate and mo- 2 0 L > o ]
mentum are modified at the end of each epoch . The learning rate is reduced when the total error in. 8 E ]
creases, and increased when the error decreases. The momentum is disabled until the end of training if (%’ 05 F 3
the total error increases. The error signal é;, for an output unit ¢ is given by o ]
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where 1; is the desired activation value and a; is the activation obtained. For a hidden unit 7, 6; is given b

5 = a.-(l—m)ZfSkwki ¢
%
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Figure 6: The two first principal components of the positive patterns in the first experiment

. The model was evaluated on six musical pieces from Bach. The first two pieces were the nineth and
. thgteenth two-part inventions in F minor and A minor (Bach, 1970). The third and fourth were th
third and fourteenth three-part inventions in D major and B flat major (Bach, 1970). The last two iecez
- were the fourth and seventeenth fugues in C sharp minor and A flat major of the Well-Tempered C}l)avier
(Bach, 1989). Each part? of each piece was input separately. The size of the window was not wide enough
to cover all instances of segmentation present in the pieces, yet it was wide enough to cover most of thergn
- The ‘result‘s are displayed in table 1. The percentage of misclassifications is low. We think that these mis;
classifications can be reduced or even avoided by increasing the number of patterns in the training set.

where wg; is the weight from hidden unit ¢ to output unit k.

We have used two output units in all experiments. We have trained the model to display activatio
values (10) in these units when the window in the input layer is representing a negative pattern, that means,
a rhythmic pattern which is not a case of segmentation. We have also trained it to display values (01)
when the window is representing a positive pattern, a thythmic pattern which is a case of segmentation

5 First experiment

The first experiment was on recognizing cases of segmentation given by pauses. We have randomly gen:
erated three sets of patterns, each set containing 2000 patterns. The first set was the training set. Ev:
ery 20 epochs, training was halted, and the model was tested on the second set. When the total erro
stopped decreasing, training was ended, and the model was tested on the third set. We could thus eva
uate different net configurations to find the optimum number of hidden units.

The best performance was given by a configuration with 20 hidden units. The window in the inpu
layer held 10 pairs of units. The initial weights were set randomly, and it was trained for 80 epochs.

A fourth set containing 8 positive and 73 negative patterns was also randomly generated. Princip
component analysis (PCA) was performed on the activations of the hidden units given by each patter
in the set. Figures 5 and 6 plot the two first principal components for the negative and positive patter
respectively. We can verify that there is no correlation between the negative and positive patterns, f

ecided to ke

6 Second experiment

‘ Ehe second experiment was on recognizing cases of segmentation given by longer durations. Again, we
ave‘rand.omly generated three sets of patterns, each set containing 3000 patterns. The trainin t)h d
was identical to that followed in the first experiment. . s e
N 'Iilhe best pe‘rformar{ce was given .by a configuration with 10 hidden units. The window in the input
_layer held 19 pairs of u‘m‘ts. Initial weights were set randomly, with training lasting for 240 epochs.
:‘PCAAwfourth ?‘et containing .110'positive and' 440 negative patterns was also randomly generated. Again,
8 oot ta}lls atpp 1;d to tbe gctlvatlons of the hidden unitsl given by each pattern in the set. Figures 7 and
h e two rst prm@pal componenﬁs for the negative and positive patterns respectively. As in the
experiment, we verified that there is no correlation between the negative and positive patterns.

1 As the output units are now linear, the existence of the bias is no longer necessary, although we have d 2 Also known as voice

them.
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Table 1: Results of the first experi
patterns; 9% NM: percentage of misclassified negative patterns; %

patterns;
Pieces ]| #NP | #PP | %NM | %PM
1 814 | 2 0 0 [Pieces || #ANP | #PP | %NM | %PM |
2 784 | 16 0 0 1 764 | 52 2 0
e 1188 | 12 0 0 2 790 | 10 ) 0
T4 2293 | 10 0 60 3 1171 | 25 10 o
5 4556 | 44 0 14 4 2253 39 13
3 2204 | 36 0 0 5 J[4483] 98 | 26 185
. 6 2185 | 48 29 6
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Figure 7: The two first principal components of the negative patterns in the second experiment 2 0 o ol ]
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The model was evaluated on the same musical pieces as in the first experiment. Each part of each » 05 F E
piece was input separately, and the window size was also wide enough to cover most instances of segmen- 1.0 E ) 3
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The third experiment was on recognizing cases of segmentation given by breaks of similarity. Once again, 1.0 FT— T
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method was identical to that followed in the first two experiments. 8 05 F E
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Figure 8: The two first principal compo
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— #NP: number of negative patterns; #PP: npumber of posi-

Tuble & Renlle o e B e fied negative patterns; 9%PM: percentage of misclassified pos-

tive patterns; 9% NM: percentage of misclassi

itive patterns;

Pieces || NP | #PP | %NM | %PM

1 813 | 3 3 0
2 772 | 28 6 0
3 1196 | 4 5 0
4 2302 | 1 0 0
5 4589 | 8 2 0
[ 6 2233 | 7 3 0

8 Conclusion

A neural model with an identical to olo| o that o NEHa,lk 18 pro osed to se ment musical pieces
g
accordmg to three cases of rhythrmc segmentat)on The model was SUCC@SSfUll)’ apphed to six musical
preces fi Bach The results presented here suggest that musmal segmentatlon can be accomphshed b,
1eces Iromm Cl Y

a neural model with supervised learning.

Acknowledgements

This research was fully supported by CAPES, Brazil.

References

)
Bach, J. S. 970). nventionen und 9212’0711611 BWYV 772 801. Barenre te Kassel Basel Germany

S [4 Tierie vie 0. — arenreiier S Basel er-
ach, B . a Wohltempe rte Klavier 1 WV 846 6 T er Kas el G

many.

)
Drake, C & Palmer C (1993) Accent structures 1n music performance Music FC’ICEP“OTL 17(:;) 343~
) ) )

378.
Gabrielsson, A. (1973). Similarity ratings and dimension analyses of auditory rhythm
navian Journal of Psychology, 14, 138-160. i
G W. R., & Gottwald, R. L. (1968). The perception and learning of temporal patterns {p .
aLmeauat.erly‘,JournaI of Ezperimental Psychology, 20, 97-109.
Tempered Clavier, A Performer’s Discourse of Method.

patterns. Scandi-

Kirkpatrick, R. (1984). Interpreting Bach’s Well-
Yale University Press, London, UK.

eraal enao: 9 enerative Theory o Tonal usic. The ess, Cam-
Lerdahl, F & Jack ndoff, R S (1 83) A G Y f Musi he MIT Press, 1045
PR} 3 r

bridge, MA. -
: . A general framework for paralle
i G. E., & McClelland, J. L. (1986) : L
Rumelh'irtt,; ]3 }rao.yceI:slinnt;n)In Rumelhart, D. E., McClelland, J. L., & the PDI.) Rg:i;i}ild(g?:o&;;F )
';:zrzlfel gistributed Processing, Vol. 1, chap. 2, pp. 45-76. The MIT Press, C , -
ki T. J., & Rosenberg, C. R. (1987). Parallel networks that learn to pronounce english text.
Sejnowski, T. J., , C. R.
Comples Systems, 1, 145-168.

II Simpésio Brasileiro de Computagio e Miisica 121

Um Modelo Inteligente para Classificacio Harménica Tonal
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ABSTRACT

This work presents an artificial intelligence solution for the
barmonic classification problem. The proposed artificial intelligence model
divides the harmonic classification problem in subproblems. Intelligent
solutions are indicated for each subproblem. The subproblem'’s solutions
interact into the model in the way to find the solution for the harmonic
classification problem. The subproblems found are: chord identification, chord
classification, chord inversion classification, music tonality classification and
harmonic degree's classification. The model indicates connectionist solutions
for the chord and tonality classification subproblems, and indicates symbolic
solutions for the chord inversions and barmonic degree's classification
subproblems. The chord identification problem is partially solved by an
algorithm solution. The model was implemented in an appropriately software
and hardware that allowed connectionist and symbolic solutions, and the
utilization of MIDI interface as music source. The model validation was
performed using musical parts from great erudite composers. The model
performed an acceptable classification of these music parts showing that
cognitive musical problems can be solved by Artificial Intelligence solutions.

1 Introdugio

A classificagfo harmonica consiste em gerar a descricfio de uma estrutura audfvel, formada
por um conjunto de tons e suas relagdes melddicas, ritmicas e métricas que evidenciam uma estrutura de
estilo especifico. A relagio entre acordes e tonalidade & bastante estreita pois € a tonalidade que faz a

sonoridade de um acorde com uma fungo, € a0 mesmo tempo, sdo os acordes, com suas seqtiéncias e
relagOes, que criam a tonalidade.

Dado um conjunto de notas e uma tonalidade especifica, pode-se analisar harmonicamente
estas notas. Por exemplo: um acorde formado pelas notas d6, mi e sol, possui o grau harmdnico I na
tonalidade d6 maior ¢ possui 0 grau harménico V na tonalidade de f4 maior. Este & um problema de
classificagio ¢ a inteligéncia artificial oferece ferramentas que permitem resolver este tipo de problema
€omo o conexionismo e a abordagem simbélica.
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