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Abstract

Many existing fundamental frequency recognition (FFR) algorithms return reli-
able results when the analysis window is sufficiently wide. In some applications,
however, the response time, i.e., the sum of the width of the analysis window and
the computation time for the FFR algorithm, must be made as short as possible.
This paper studies the effect of window width on the accuracy of two FFR algo-
rithms and describes a new algorithm with improved accuracy for narrow analysis
windows. The new algorithm uses dynamic programming to match harmonics to
peaks in the constant-@Q transform of the signal. A modification to another FFR
algorithm that enhances its performance in real time is also considered.

Introduction

A pitched musical sound is composed chiefly of harmonic components whose frequencies are integral
multiples of a fundamental frequency. The problem of fundamental frequency recognition (FFR) is
encountered in the automatic analysis of these signals, such as in pitch-to-MIDI systems that enable
acoustic instruments to be used as controllers of digital synthesizers.

FFR algorithms that operate in the frequency domain perform spectral analysis on the signal by seg-
ments and apply a pattern matching technique to the spectrum to determine each segment’s fundamental
frequency. Amuedo (1985), for example, identifies sinusoidal components in a signal by the peaks in the
power spectrum and examines how the hypothesis for each component to be the fundamental frequency
is reinforced by the other components. Pearson and Wilson (1990) consider a multiresolution approach
for the spectral analysis step. Doval and Rodet (1991a, 1991b) apply a maximum likelihood analysis to
determine the fundamental frequency also using peaks in the power spectrum. Brown (1992) computes
the cross-correlation of the constant-Q transform of a segment of the signal with a fixed comb pattern.
The calculation of the constant-Q transform and a fast algorithin for approximating it are considered in
(Brown 1991) and (Brown and Puckette 1992), respectively.

An alternative approach for designing FFR algorithms is based on computing an autocorrelation
between the waveform and a delayed version of itself and determining the fundamental frequency by
maximizing the degree of their similarity. Ney (1982) uses time-warping to account for small variations
in the signal waveform. The estimated period is the amount of shift that results in the best match of a
segment of the signal with a future segment. Lane (1990) adapts the center frequency of a bandpass filter
to match the fundamental frequency of the signal using a convergence algorithmn. Cook et al. (1993) use
a least mean square adaptive algorithm to determine the coefficients of a filter that predicts a segment
of a signal from an earlier segment. The phase of the filter is computed from these coefficients, which
is then used to estimate the period. Another technique, described in (Brown and Puckette 1993), first
determines a coarse estimate of the fundamental frequency using a frequency-domain algorithm. The
phase change of the component closest in frequency to the coarse estimate between two segments of the
signal separated by one sample is then used to estimate the fundamental frequency accurately.

Accuracy is an important measure of performance of an FFR algorithm. In applications where syn-
thesizers with continuous pitch are controlled, the resolution at which the FFR, algorithm can distinguish
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frequencies is also an important measure. An error of a few percent in frequency is perceivable in many
musical sounds. Frequency-domain FFR algorithms have lower recognition resolution inherently since
their spectral analysis step subdivides the frequency range into bins. The disadvantage of autocorrela-
tion algorithms, however, is that a good initial estimate of the fundamental frequency is required for
them to converge. Hybrid approaches combine the strengths of both types of algorithms (Kuhn 1990;
Brown and Puckette 1993).

When these algorithms are applied to real-time pitch-to-MIDI controllers, another important per-
formance measure is the response time of the system, which is equal to the sum of the width of the
analysis window and the computation time for the FFR algorithm. Ideally this response time should be
so short that it is not perceived by the performer. Economic and engineering constraints have resulted
in commercial systems whose response times are over 50 milliseconds for notes with an average pitch,
and even longer for low-pitch notes (Cook et al. 1993). This paper studies the effect of window width
on the accuracy of the frequency-domain algorithm in (Brown 1992) and the autocorrelation algorithm
in (Cook et al. 1993) and describes techniques for improving their accuracy.

The Constant-Q Transform/cross-correlation Algorithm

The FFR algorithm introduced by Brown (1992) operates in two steps: computation of the constant-
@ transform of a segment of the signal, and cross-correlation of the constant-¢ transform with a fixed
comb pattern that has the logarithmic-scale spacing of the harmonics. The constant-@ transform of a
sequence xz[i] is defined by

Ny-1
X[fl=1/N; Y W(Ny,i)afi] e 1270,
i=0

where Q = 1/(¥/2 — 1) is the quality factor of the transform, Ny = S/(2//%f,.;,) is the number of
samples of the signal that need to be analyzed for frequency bin f, and W is the Hamming window
whose width has been adjusted by Ny, given by W(Ny,1) = o — (1 — a)cos(2mi/Ny), a = 25/46. For
real-time operation, and for smaller values of f, Ny may in fact be greater than the number of samples in
the signal being analyzed. In these cases, X|f] is computed using only the available samples. The values
d, the number of bins to subdivide each octave, S, the sampling rate, and fymin, the center frequency of
the bin with lowest frequency, are parameters of the algorithm.

The constant-Q transform extracts the frequency components of the signal z[i] in logarithmic fre-
quency spacing, where bin f corresponds to the component with center frequency 27/ ;. Since the
harmonics of a signal with fundamental frequency f; have frequencies fo, 2f0, 3fo, ..., and so on, the
spacing between harmonics in the constant-Q transform X [f] is fixed and independent of the value of
fo. Thus to correlate the harmonics, a cross-correlation (i.e., convolution) is computed between X|[f]

and the pattern
dlog, 4

dlog, 3

e e
d

e
1,0,-..,0,1,0,...,0,1,0,...,0,1,0,

The number of harmonics to use in the pattern is also a parameter of the algorithm. The center frequency
of the bin with the highest cross-correlation value is then returned by the algorithm as the estimate of
the fundamental frequency of the signal. To illustrate this algorithm, the constant-Q transform of a
30-millisecond initial segment of a C4 (261.6Hz) note sampled from an electric guitar, the comb pattern,
and the cross-correlation are shown in figure 1.

A set of experiments was conducted to study the real-time performance of this algorithm. We
implemented and tested this algorithm with the 10-, 15-, 20-, and 30-millisecond initial segments of a
set of notes sampled from an electric guitar taken from the range G2 (98.0 Hz) to C6 (1046.5 Hz). The
results are shown in table 1. The algorithm correctly recognizes the 30-millisecond initial segments of
all notes and fails to recognize most of the initial segments of notes at or below C3 which have length
20 milliseconds or below. It also fails for 10-millisecond initial segments of notes at or below C4. This
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Figure 1: Constant-@Q transform and cross-correlation for a 30ms segment of a C4 note.

G2 C3 G3 Cd e Cs G5 C6
(98.0) (130.8) (196.0) (261.6) (392.0) (523.3) (784.0) (1046.5)
0ms | 50.0  59.5  80.5  105.9 4000 5263 7885 10896
Isms | 101.5  53.7 1971 2631 3943  526.3 7885  1052.6
0ms | 50.0  52.2 1971 2631 3943 5263 7885  1052.6
30ms | 100.0  131.6 1971 2631 3943 5263 7885  1052.6

Table 1: Results of constant-Q transform/cross-correlation algorithm (actual frequencies (in Hz) are
shown in parentheses beneath note names; incorrect results are shown in bold type).

failure is a result of the inability of the constant-Q transform to distinguish neighboring frequencies
when the analyzed signal is short and has a low fundamental frequency. The frequency contents of a bin
spill over into neighboring bins causing the cross-correlation step to fail. Such a situation is shown in
figure 2 for a 10-millisecond initial segment of a C4 note.

A New Constant-Q Transform/Dynamic Programming Algorithm

The new algorithm is motivated by noticing that although peaks in the constant-@ transforms of
problematic cases have broader side lobes, their relative positions remain quite stable. This suggests that
higher accuracy can be achieved by replacing the cross-correlation stage by a peak detector followed by
an algorithm that matches the peaks to harmonics. In this sense, the new algorithm is a generalization
of the one in (Amuedo 1985). Since some detected peaks may be extraneous and peaks corresponding
to some harmonics may be missing, a “time-warping” algorithm is devised to match the peaks to the
harmonics in a manner that minimizes a total error measure.

Peaks are first identified in the constant- @ transform of the signal segment. To prevent excessive
extraneous peaks, ones with small amplitudes are ignored. Examples of such extraneous peaks appear
between 600Hz and 700Hz in figure 1. The algorithm identifies and uses the p peaks with the lowest
frequencies. Let these peaks have frequencies fi, fs,. .. , [y and amplitudes ay, ay, . .. , Gp, Tespectively.
Also let b be the number of harmonics considered. The values p and h are parameters of the algorithm,
chosen to be 10 and 8, respectively, in the experiments described below. Since some peaks as well as
some harmonics should be skipped, a matching of peaks to harmonics is represented by a sequence of
pgirs (i1,91), (42:72), -y (in,7n), where 1 Sh<ipg< < <P, 1<f<fo<on < Jn < h, and

L {ik, jr) = (k=1 + 1, k1 + 1), (Geer +1, 55— +2), or (k-1 +2,jk-1+1). The last condition ensures that
~only a single peak or harmonic is skipped at a time. The boundary conditions are (ing1) = (1,1), (1,2),
. or(2,1), and (insdn) = (0, ), (p~ 1,4), or {(p,h —1). The problem is then one of finding, among all

bossible such sequences of pairs, a sequence of pairs that minimizes the error measure £ = ZZ_I e(ik, Jk),

where e(iy, j).) is the error of mastching the ix-th peak to the jg-th harmonic.
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Figure 2: Constant-Q transform and cross-correlation for a 10ms segment of a C4 note.

To formulate the problem so that it can be solved by dynamic programming, let e(i,71) = 0 and
let e(ix, jx) depend only on the first & pairs of a sequence, 1.e., (i1,51), (42,J2), -, (i, Jr). After some
experimentation, we arrive at the following definition of the error function e. The matching of the
i;-th peak to the j-th harmonic, represented by the pair (i, 51), suggests fi, /4 as an estimate of the
fundamental frequency. Let fy_; be the weighted average of the estimates of the fundamental frequency
generated by the first k — 1 pairs, where the weights are the amplitudes of the corresponding peaks. The
assumption is that peaks with larger amplitudes should have a greater effect on the final estimate of
the fundamental frequency. ThL}S define fi_q = Zl";l(ail fali)/ Z;:ll a;,. The error function is then
defined as e(ik’vjk) = (flh/.?k - fk"l)z'

The recurrence formulas for implementing a dynamic programming algorithim to determine the se-
quence of pairs with minimum error are derived as follows. Let

E;; be the error of a sequence of pairs that optimally matches the first 4 harmonics to the
first j peaks,

Fi; be the fundamental frequency estimated by this sequence, and

A;,j be the accumulated sum of amplitudes of peaks used in this sequence.

Then, E; ; is computed by the equation
Bij=mind By joy+ (fi/§ = Fim15-1)®, Bioggor + (Fi/d — Ficayo1), Bioyyon + (£i)5 — Fily-2)%)
The equations

FivgarAint/(Aisgi-1 + ad) + (fi/5) @i/ (Ase 11 + a5)
Fij=q Figj1diog-1/(Aiog 1 +a) + (fifd) i/ (Aicay 1 +a;)  and
Firgadion-o/(Aimrjoe + a) + (fifd) ai/(Ai 10 + a;)

A1 -1+
Aij =1 Aigj-1+ta
Aisrjoata

are used to update F; ; and A; ;, respectively. Whether the first, second, or third expressions in these two
equations are used depends on which term within the braces in the equation for E; ; has the minimum
value. Initially, let By, = E1 5 = E3; = 0 and Ei1 = FBy;=oc0fori>2andj > 2 The values of the
tables for E; ;, F; j, and A, ; can be updated in either column order or row order. References to values
outside the range of the indices are assumed to return arbitrarily large values. The final estimate of the
fundamental frequency returned by the algorithm is Fohy Fo-1,n, 01 Fy o1 depending on which of Eyp,
Ep 14, and E, 51 has the smallest value.
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G2 Cs3 G3 C4 a4 Cs as Ce
(98.0) (130.8) (196.0) (261.6) (392.0) (523.3) (784.0) (1046.5)
10ms | 207.3 243.2° 201.2 26011 4006  527.2 7983  1052.0
15ms | 1015 1347 1993 2488 3965  527.0 7881  1052.0
20ms | 1022 1335  107.2  263.0 3951 5255 7831  1052.6
30ms | 100.0 1319 1967  263.0  393.8 5255 7885  1052.6

Table 2: Results of constant-@ transform/dynamic programming algorithm (actual frequencies in paren-
theses; incorrect results in bold type).

The new algorithm was tested on the same set of initial segments of notes, and its results are shown
in table 2. It performs better than the algorithm based on cross-correlation, and correctly recognizes the
15-, 20-, and 30-millisecond initial segments of all notes. It also correctly recognizes all 10-millisecond
initial segments of notes at or above G3.

Real-Time Considerations for the Periodic Predictor Pitch Tracker

Given an initial estimate of the fundamental period, the periodic predictor pitch tracker (PPPT) of
Cook et al. (1993) computes a set of predictor coefficients for the signal using an iterative least mean
square (LMS) algorithm and uses them to refine the estimate of the fundamental period. Let the signal
be given by the sequence xo, %1, ... and the initial estimate of the fundamental period be P. Let there
be 2M + 1 predictor coefficients ¢_ar, c-pr41, ..., cpr. The predictor predicts the i-th sample from the
2M + 1 samples centered around the (i — P)-th sample using the equation £; = Eﬁ* M CiTi-pyj. The
error of this prediction is ¢; = z; — 2;. For a given signal, an approximation of the set of predictor
coefficients that minimize the mean square error over the prediction of the N consecutive sample values
Em4P EM+P+1,- -, Earp PN can be obtained by iterating the LMS update equations

C} = Cj -+ a/(?M + l)fE——ZZEi_P+j€i,

for j = ~M,~M +1,...,M, over the N predictions i = M + P,M + P + ,...,.M + P+ N. The
parameter o is any positive number less than 1 and z2 = 1/R Zi;ol 22, R=M+N+P+ 1, is the
signal power. To perform this operation, the length of the signal must be at least R. Having obtained
the predictor coefficients, a more accurate fundamental period estimate is given by

P’ = P(1-0/2r),

where
# = arctan (Zﬁ_M ¢ sin(wj)/zjl\i_M ¢ cos(wj))

and w = 2m/P.

Cook et al. (1993) suggest using the PPPT in real time by supplying samples to it continuously,
Le., in the above formulation, letting N = co. The fundamental period estimate will then converge to
an accurate value a certain time after the beginning of a note. They report the average of this latency
to be 30.1 milliseconds for notes between F5 (698.5Hz) and G6 (1568.0Hz), which are tested in their
experiments. We implemented and tested the PPPT on the same set of initial segments of notes used
in the previous experiments. However, it does not converge to accurate frequency estimates during the
duration of most segments of notes, especially for short, low-pitch ones. The algorithm is then modified
to choose the largest possible value of N for a signal segment of a given length and iterate a number
of times over that segment, allowing sufficient time for the predictor coefficients to converge. Table 3
shows the recognition results of the modified algorithm. In these experiments, M is chosen to be 2,
and the initial estimate of the fundamental period is taken to be that of a seminote higher than the
note to be recognized. This latter assumption can be satisfied if the PPPT is used as a postprocessing
step of the dynamic programming FFR algorithm described in the previous section. The algorithm is
set to iterate 50 times over a signal segment. The modified algorithm is found to correctly converge to
the fundamental frequencies for all initial segments of notes except in two cases. It cannot be used for
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G2 C3 a3 C4 G4 cs G5 c6
(98.0) (130.8) (196.0) (261.6) (392.0) (523.3) (784.0) (1046.5)
T0ms | - 139.1  103.9 2585 3090 5380 7875  1052.1
15ms | 99.0 1310 10951  261.2 3945  524.1 7864  1052.3
20ms | 98.9 1314 1951  261.8 - 3937  523.5  785.6  1052.3
30ms | 989 1314 1952  261.8 3937 5239 7856  1052.1

Table 3: Results of PPPT algorithm (incorrect results for 10ms C3; not enough samples to run 10ms
G2 case).

the 10-millisecond segment of G2 because the fundamental period of that note is 227.0 samples and the
number of samples in the segment is 223 (at a sampling rate of 22255Hz). The algorithm also converges
to an incorrect fundamental frequency for the 10-millisecond segment of C3. Furthermore, note that
the frequency estimates generated by this algorithm are closer to the actual frequencies than the two
frequency-domain algorithms.

Summary

This paper reports experiments that show how the accuracy of the FFR described in Brown (1992)
is affected by different window widths. It then proposes a new FFR algorithm with higher accuracy
for narrow analysis windows. It also describes a modification to the PPPT algorithm of Cook et al. for
improved operation in real time.
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Resumo

Descrigiio formal da sintaxe, do universo semdntico, dos operadores e de alguns
aspectos de implementagfio da linguagem SOM-A. Com o interpretador desta lin-
guagem, que é voltada exclusivamente para a sintese aditiva de sinais musicais,
executam-se partituras polifonicas associadas a orquestras, para as quais se definem,
uma a uma, as componentes espectrais em todos os seus parimetros, isto €, ordem de
freqiiéncia, Angulo inicial de fase, curva de envoltdria, e grau de estereofonia.

HISTORICO

Um primeiro esbogo para a linguagem SOM-A surgiu em 1986 a partir de algumas experiéncias com o programa
Music V (Mathews et. al. 1969). Tais experiéncias giravam em torno da tentativa de se interpretarern composi¢des
algoritmicas baseadas nas drvores de tempos (Arcela 1986), as quais, na maioria das vezes por forga do modelo,
possuiam uma grande quantidade de componentes espectrais, e eram caracterizadas, do ponto de vista da escrita de
eventos e mecanismos espectrais, por nio haver nelas, a0 menos aparentemente, qualquer possibilidade ou indicio
de serem interpretadas por um processo que nfio fosse o da sintese aditiva. Além disso, registrava-se nessas
composigdes a exigéneia de uma certa projecio acistica estereofdnica, segundo a qual um subconjunto bem definido
do universo de componentes espectrais deveria soar em apenas um dos canais, enquanto as demais componentes
soariam no outro canal, exigéncia esta que trazia uma ligeira alteragdo na arquitetura do instrumento minimo
necessrio A sintese aditiva padriio, isto &, a que se registra na literatura, como em (Moorer 1977). As estruturas de
dados estdticas da implementagio FORTRAN do sistema Music V permitiam apenas a execugfio de instrumentos
possuidores de relativamente poucas componentes, E como havia a intengfio de se perfazer uma interpretagfio plena
dessas estruturas musicais em todas as suas partes, sem que houvesse qualquer truncamento no conjunto de
componentes, a idéia que restava era investir na defini¢fio de uma linguagem que pudesse aceitar um instrumento
de qualquer tamanho, ¢ que tivesse uma tnica especialidade: a sintese aditiva. E assim, com apenas 5 operadores,
ecomumasintaxe semelhante a de LISP — os instrumentos e os eventos espectrais devem ser escritos rigorosamente
na forma de expressoes simbélicas —, surgiu a linguagem SOM-A, assumindo a simplicidade como sua caracteristica
maior.

Como niio podia ser de outra forma, a primeira implementagfio ocorreu em LISP (Nogueira Filho 1988), que
era sem diivida a atitude mais correta e natural, levando-se em conta a natureza das estruturas de dados escothidas
pararepresentar 0s elementos de SOM-A. Naquela época, o que de methor havia para o sisiema operacional MSDOS
era o interpretador muLISP87 (Mulisp 1987), um ambiente satisfatGrio em muitos aspectos, mas oferecendo como
obstdculo crucial & implementagiio de programas voltados para a sintese de sinais de dudio justamente a sua
inevitdvel execugfio de operagdes aritméticas totalmente por software. As vezes, para se interpretar um trecho de
10s, dependendo da complexidade orquestral, eram gastas entre 10 ¢ 20 horas de processamento em intel286 a 10
MHz. Hé o caso de uma pega de 120” contendo instrumentos de até 76 componentes espectrais para a qual foram
necessédrios 25 dias ininterruptos de processamento! Mesmo assim, a implementagiio de SOM-A em LISP para
pequenas maquinas assumiu uma importancia capital no desenvolvimento da linguagem, pois, se nio consegue
executar pegas de conteddo espectral denso em um prazo razodvel, ela vem cumprindo o papel de uma especificagiio




