Concluding Remarks

1. Certain classes of sampled sounds are directly, immediately, and readily usable for the purposes of composition, e.g., point (impulse) excited sounds such as plucked string (pianicato), drum, and piano (to some extent). Other sounds are useful for special occurrences but not for smooth melodic definition.

2. In order to widen the applicability of sampled sounds, the research community needs to direct its efforts to finding solutions to make the non-impulse-excited sounds readily usable for forming musical constructs. A synthesis model is not as useful if its demonstrable application is limited to plucked or percussive sounds. Likewise, a synthesis model which can take two sampled sounds and join them in a variety of expressive two-note phrases is more useful than a model which merely duplicates an existing sampled sound.

3. We must recognize that making a lyrical melody via digital means entails more than just cross-fading two sounds. It is essential to accept that in most cases, creating transitions requires knowledge, either in the form of data from the signal, or in equivalent algorithms to generate the data.

4. There is more than one possible transition between two voices, whether the timbres are the same or different. That is, a multiplicity of possible trajectories exists. These constitute a repertory of articulations. The ability to display them digitally is a demonstrates the expressivity of a given composition/performe environment.

5. To choose a suitable transition trajectory (in order to maximize some local coherence criterion in composition), one needs suitable analytical tools. This is important in both a composition as well as a performance environment. The relevant tools might include some to decide which transition trajectory is being executed by the performer and provide the responding algorithms to the best or most accurate information (regarding what actually happens) and allow it to make the best choice under a given composition strategy. They might also include some to analyze the pitch trajectory so as to perform a retrograde, transposition, inversion, etc., in a musically responsive way.

6. One synthesis candidate that is naturally suited for linking (or connecting) sampled sounds into articulated melodic constructs is kinematic synthesis, where the basic unit of the method is the triple: the amplitude envelope (possibly expressed as upper and lower sub-envelopes), the pitch trajectory or equivalent, and the trajectory of critical frames (which are periods in a steady state, and something more general in transient regions).

References

A seção seguinte se concentra na utilização de objetos como forma de representação da música. A seção 3 faz uma breve descrição do modelo Smallmusic. Na seção 4, é apresentado o ambiente CAMC e sua abordagem de composição como prototipação. A seção 5 contém algumas conclusões sobre o trabalho desenvolvido.

2. Representação do Músico através de Objetos

Reais ou abstratos, objetos estão presentes em todas as atividades humanas e a música não é exceção. Até os mais simples conceitos musicais podem ser descritos como objetos. Se observarmos atentamente uma partitura musical tradicional podemos perceber facilmente a existência de inúmeros elementos cujo comportamento é variado porém com uma série de características em comum, como podemos verificar na figura 1.

![Figura 1](image1)

Todos estes objetos se interrelacionam apropriadamente de forma a constituir outros objetos mais complexos tais como melodias e trechos musicais ou até mesmo uma composição completa. A partitura anterior, por exemplo, poderia ser organizada como na figura 2.

![Figura 2](image2)

Esta figura apresenta de forma mais clara como está organizada a composição acima. Os objetos mais simples (figuras musicais) estão agrupados constituindo objetos mais complexos. Entretanto, embora de diferentes complexidades, todos estes objetos apresentam um comportamento similar e podem ser utilizados da mesma forma (uniformidade). Podemos verificar no exemplo dado que, do mesmo modo que figuras musicais tradicionais como as colheitas aparecem diversas vezes ao longo dos trechos, o objeto refrão aparece duas vezes na música (um tom abaixo na segunda vez).

Esta forma de representação facilita o processo de criação, pois o compositor é capaz de conceber a estrutura básica de uma música simplesmente compondo os objetos do sistema, mesmo que internamente estes objetos ainda não estejam completamente definidos ou adaptados para a composição.

![Figura 3](image3)

É importante ressaltar que uma música definida desta forma, mesmo que incompleta, poderá ser realizada na composição de novas músicas pois, na visão orientada a objetos, ela é um objeto como qualquer outro.

3. O modelo Smallmusic

O modelo Smallmusic é um modelo orientado a objetos para a representação da música. Objetos são estruturas de dados auto-descritivas cujo comportamento está definido em subrotinas (métodos) auto-acionáveis. Como nosso objetivo está centrado em definir e interagir com conceitos musicais e sons, vamos tratar de objetos específicos para esta tarefa denominados sound objects.

Um sound object tem três características principais: nome, que identifica o objeto; icon, a representação gráfica do objeto e parâmetros, que descrevem o som ou evento produzido pelo objeto. Estes objetos estão organizados em uma hierarquia de classes como na figura 4.

![Figura 4](image4)

A classe SoundObject é a supraclasse, define o comportamento e as características básicas de todas os sound objects. Nesta classe estão definidos os parâmetros que são herdados por todas as suas subclases.

A classe Primitive generaliza as classes primárias do Smallmusic. Estas classes modelam os conceitos musicais mais simples e estão diretamente relacionadas com o protocolo MIDI [4], ou seja, para cada subclasse definida existe uma mensagem MIDI correspondente (note On, note Off, etc.). Estas primitivas são as únicas classes capazes de produzir sons ou eventos diretamente. Se desejarmos, por exemplo, enviar uma mensagem Note On para o sintetizador basta criarmos um instância da classe NoteOn, configurar seus parâmetros e executá-la, da seguinte forma.
Para permitir a aplicação dos conceitos relacionados a prototipagem no processo de composição (figura 5), o ambiente CAMC dispõe de duas ferramentas: o Desktop (figura 6) e o Estudio de Som (figura 7).

A principal característica do Desktop é suportar um modo experimental de trabalho, permitindo ao compositor avaliar rapidamente o resultado de suas experiências. Por sua vez, o Estudio de Som é dedicado à atividade de performance, possibilitando a gravação e reprodução de objetos musicais. Estas duas ferramentas são complementares e manipulam os objetos existentes no ambiente de maneira integrada.

O ambiente foi desenvolvido na linguagem Smalltalk V/286 e utiliza o padrão MIDI para a comunicação com os instrumentos musicais. O controle de mensagens MIDI ocorre em tempo real, através de processos ativados por interrupção, o que confere maior flexibilidade na intervenção do usuário com o ambiente.

5. Conclusões

Neste artigo apresentamos um ambiente de auxílio à composição musical, no qual foi utilizado um modelo orientado a objetos com o objetivo de suportar a ideia de composição como prototipagem.

Existem outros tipos de ambientes para apoio à composição musical que se basinham na notação tradicional. Concordamos que a notação musical tradicional seja necessária para o registro de melodias devidamente concebidas, já que é uma linguagem mundialmente consagrada. Entretanto, a sua representação rígida (notas, tempos e compassos) não nos parece ideal para a atividade de criação musical. Por este motivo, pretendemos incorporar ao ambiente uma nova ferramenta que permita ao usuário editar os objetos numa espécie de pentagrama. Neste caso, as figuras musicais correspondem às classes compostas definidas no modelo.

Iremos continuar evoluindo a modelagem aqui apresentada. Estamos investigando a utilização do modelo delegativo de protótipos [1] na implementação dos objetos, com o objetivo de ampliar a uniformidade do modelo e a interatividade do ambiente.

6. Referências


1Se desenharmos representar uma nota com duração de 4 seminúncias (semibreve) em um compasso 2 por 4, serão necessárias duas minimas em compasso sucessivo unidas por uma ligadura. Desta forma, o objeto que queríamos representar foi modificado para respeitar o tempo do compasso. Da mesma maneira, existem algumas situações difíceis de serem representadas pela notação tradicional.
Figura 6 - Desktop

Figura 7 - Estúdio de Som